
sage-euler-product
Release 0.0.3

the sage-euler-product authors

Nov 28, 2025

CONTENTS:

1 Documentation 3
1.1 Tutorial Euler Product . 3
1.2 Fast multi-precision computation of some Euler products . 6
1.3 Installation EULER_PRODUCT . 23
1.4 API Documentation . 26

2 Indices and tables 43

Python Module Index 45

Index 47

i

ii

sage-euler-product, Release 0.0.3

sage-euler-product is a Python SageMath package implementing Eulerian Product for Number Theory

CONTENTS: 1

sage-euler-product, Release 0.0.3

2 CONTENTS:

CHAPTER

ONE

DOCUMENTATION

Release
0.0.3

Date
Nov 28, 2025

AUTHORS:

• Olivier Ramaré : initial version CNRS, Institut de Mathématique de Marseille, Aix-Marseille Université

• Dominique Benielli Aix-Marseille Université, Laboratoire Informatique et des Systèmes Integration as SageMath
package. Cellule de développement Institut Archimède

1.1 Tutorial Euler Product

1.1.1 Introduction and principles
The main object of this software is to compute in a very fast manner Euler products with rational local factors over
primes in some collections of arithmetic progressions modulo some fixed modulus 𝑞. The computations are done
with interval arithmetic, the results are certified and given in the form (lower_bound, upper_bound). An Euler
product is a product over all the (positive integer) primes, possibly in some subsequence. Here are two examples
𝐸1 =

∏︀
𝑝≡3,5[7](1 − 1/𝑝2), where the product is taken over every prime 𝑝 congruent to 3 or 5 modulo 7, and 𝐸2 =∏︀

𝑝≡1[8]

(︀
1 − 4

𝑝

)︀(︀
𝑝+1
𝑝−1

)︀2, the so-called Shanks’s constant, where the product is taken over every prime congruent to 1
modulo 8.

During the computations, Euler products over rational functions such as 𝐸2 are inferred from simpler Euler products
of the shape ∏︁

𝑝∈𝒜 mod 𝑞

(1− 1/𝑝𝑠),

by following the 2021 paper of Ettahri, Surel and Ramaré, where

• 𝒜 is some subset of 𝐺 = (Z/𝑞Z)×. The subset 𝒜 has to be the union of “lattice invariant classes”, as described
below.

• 𝑞 is a positive integer, the so-called “modulus”. We have 𝑞 = 7 for 𝐸1.

• 𝑠 is a real parameter that is strictly positif and *in this example* strictly larger than 1. A typical choice is 𝑠 = 2.
Technically, it should be an exact type, like 2 or 21/10, or an element of a RealIntervalField(...) with
enough precision. Since this precision is given in binary digits, using 10 times the number of decimals asked
for the final result is a safe choice. Notice that one may have to import RealNumber from sage.all and that
RealIntervalField(1000)(2.1) is maybe not what one would expect: 2.1 is understood as a float with 53
binary digits, then extended by adding enough binary digits 0, the result being somewhat different in decimal
expansion.

3

sage-euler-product, Release 0.0.3

See also

The mathematical proof of this software is taken from the paper ** Fast multi-precision computation of some Euler
products ** by Salma Ettahri, Olivier Ramaré and Léon Surel, published in 2021, in volume 90 of *Mathematics
of Computations*, pages 2247 to 2265.

In case 𝑞 = 1, the notion of lattice invariant classes is trivial. Let us start by describing this case.

1.1.2 Euler Product over every primes
from euler_product.lattice_invariant_euler_products import get_euler_products
get_euler_products(1, 21/10 , 1-x^2, 1+x^3, 103, 20, verbose = 0, with_laTeX = 0, digits_
→˓offset = 10)

This computes the Euler product
∏︀
𝑝≥2

1−1/𝑝2𝑠

1+1/𝑝3𝑠 where 𝑠 = 2.1 with potentially 103 correct digits and by computing
directly the Euler product for all the primes less than 𝑃 = 20. This value of 𝑃 is 300 by default. The level of comments
verbose can be set to 0, 1 or 2. The additional parameter with_laTeX is either equal to 1 or not equal to 1, with an
obvious meaning. If the output does not have enough correct digits, the user is asked to increase the value 103 to 110
for instance. We decided not to automate this behaviour.

On the effect of the choice of 𝑠, notice that the two calls

get_euler_products(1, 1 , 1-x^4, 1, 103)
get_euler_products(1, 2 , 1-x^2, 1, 103)

give the same answer, which is readily seen to be an approximation of 1/𝜁(4), where 𝜁 is the Riemann-zeta function.
Recall that we have 𝜁(4) = 𝜋4/90, a fact that we may use to check our code.

1.1.3 Lattice Invariant Classes modulo 𝑞

• Definition of Lattice Invariant Classes

We subdivide the multiplicative group𝐺 = (Z/𝑞Z)× in classes called Lattice Invariant Classes. Two points are in the
same class if and only if they generate the same subgroup modulo 𝑞.

When 𝑞 = 15 these classes are obtained by

LatticeInvariant(15)[1]
(frozenset({1}), frozenset({4}), frozenset({11}), frozenset({14}), frozenset({8, 2}),␣
→˓frozenset({13, 7}))

from euler_product.utils_euler_product import LatticeInvariant
LatticeInvariant(15)
((frozenset({1}), frozenset({1, 4}), frozenset({1, 11}), frozenset({1, 14}), frozenset(
→˓{8, 1, 2, 4}), frozenset({1, 4, 13, 7})),
(frozenset({1}), frozenset({4}), frozenset({11}), frozenset({14}), frozenset({8, 2}),␣
→˓frozenset({13, 7})))

The output is a couple whose first element is the tuple of the monogenic subgroups of𝐺 = (Z/𝑞Z)× and whose second
element is the tuple of lattice invariant classes.

• Low level tools

from euler_product.utils_euler_product import ComponentStructure
mystructure = ComponentStructure(3)

4 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

This class proposes several quantities. It is used by the high level function get_vs and get_euler_products, so the
user does not have to worry about it. However the quantities computed may have interest.

• mystructure.q: the modulus 𝑞.

• mystructure.phi_q: the value of the Euler phi-function at 𝑞.

• mystructure.the_exponent: the exponent of the group 𝐺 = (Z/𝑞Z)×.

• mystructure.invertibles: the tuple of invertibles in (Z/𝑞Z), i.e. an enumeration of 𝐺 = (Z/𝑞Z)×.

• mystructure.the_SG_tuple: the tuple of the subgroups of 𝐺 = (Z/𝑞Z)× that are generated by a single
element. Such subgroups are also called *monogenic* subgroups.

• mystructure.the_Class_tuple: the tuple of the lattice invariant classes.

• mystructure.nb_class: the number of lattice invariant classes.

• mystructure.character_group: the character group of 𝐺 = (Z/𝑞Z)×.

• mystructure.invariant_characters: for each monogenic subgroup in mystructure.the_SG_tuple,
the list of (the indices of) the characters that has this subgroup in its kernel. The order of mystructure.
invariant_characters is the same as the one in mystructure.the_SG_tuple.

• Some methods are also available.

1.1.4 Euler Product over primes in arithmetic progression
We start with the three data:

• A modulus q≥ 1.

• A rational fraction given in the form𝐹 (𝑥)/𝐻(𝑥)where𝐹 (𝑥) and𝐻(𝑥) are two polynomials with real coefficients
and such that 𝐹 (0) = 𝐻(0) = 1.

• A parameter s.

• A wanted precision nb_decimals, given as a number of decimal digits.

We have access to the lattice invariant classes, as per the preceding paragraph. For each of these classes (𝒜), we
compute ∏︁

𝑝∈𝒜

𝐹 (1/𝑝𝑠)

𝐻(1/𝑝𝑠)
.

There is a condition for this product to converge absolutely: on writing 𝐹 (𝑥) −𝐻(𝑥) = 𝑥Δ𝑇 (𝑥) for a ∆ ≥ 1 and a
polynomial 𝑇 (𝑥), we need that ∆𝑠 > 1. We assume this condition to hold.

from euler_product.lattice_invariant_euler_products import get_euler_products
get_euler_products(q, s, F(x) , H(x), nb_decimals, big_p = 300, verbose = 0, with_laTeX␣
→˓= 0, digits_offset = 10)

answers a couple whose first component is the tuple of the lattice invariant classes (𝒜), and second component is the
tuple of the values

∏︀
𝑝∈𝒜

𝐹 (1/𝑝𝑠)
𝐻(1/𝑝𝑠) , for example

from euler_product.lattice_invariant_euler_products import get_euler_products
result = get_euler_products(5, 1, 1-x^2 , 1+x^3, 100, 300, 0)

result[0][0]
frozenset({1})
result[1][0](0.

(continues on next page)

1.1. Tutorial Euler Product 5

sage-euler-product, Release 0.0.3

(continued from previous page)

→˓9884028950453419692925625250954713121182210521345380891771586345550561301333511982564965807673436742857698303688419181730105231677449,
→˓ 0.
→˓9884028950453419692925625250954713121182210521345380891771586345550561301333511982564965807673437490090286957966947966907374203853849),
→˓

which means that

0.9884028950453419692925625250954713121182210521345380891771586345550561301333511982564965807673436742857698303688419181730105231677449

≤
∏︁
𝑝≡1[5]

1− 1/𝑝2

1 + 1/𝑝3

≤ 0.9884028950453419692925625250954713121182210521345380891771586345550561301333511982564965807673437490090286957966947966907374203853849

With verbose = 1 or verbose = 2, the results are more explicitly written.

To compute the specific quantities
∏︀
𝑝∈𝒜(1− 1/𝑝𝑠)−1 where the rational fraction is thus fixed, we have a shortcut:

from euler_product.lattice_invariant_euler_products import get_vs
get_vs(q, s, nb_decimals = 100, big_p = 100, verbose = 2, with_laTeX = 0, digits_offset␣
→˓= 10)

The output is similar to the one of get_euler_products, with the same effect of the available parameters. However,
there is the additional possible value verbose = -1. In that case the output takes the shape

[big_p, phi_q, r, nb_invariant_class, big_m, time_end - time_start, difference]

which is rather explicit. The parameter big_m is introduced in the reference paper and r is the number of values of
𝑚, as per Eq. (5) of the reference paper, that are being used. The timing is given in seconds, and difference is an
approximation of the number of correct decimals given.

• Auxiliaries

We finally provide two auxiliary functions.

from euler_product.lattice_invariant_euler_products import table_performance
table_performance(min_q, max_q, nb_decimals = 100, big_p = 300)

This gives some timing info for get_vs(q, 2, nb_decimals, big_p, -1). The output has a LaTeX format of
an array, the columns being q, phi_q, nb_prime_factors_phi_q, r, nb_invariant_class, big_m and finally
time_end - time_start in seconds / 10. The meanings are the same as in get_vs.

from euler_product.lattice_invariant_euler_products import get_vs_checker
get_vs_checker(q, s, borne = 10000):

This is a simple sanity check. The output get_vs displays the Euler products computed by get_vs, except that these
products are only approximated by the truncated Euler product up to borne.

1.2 Fast multi-precision computation of some Euler products
Authors

Salma Ettahri, Olivier Ramaré, Léon Surel

6 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

Note

This file is a web version of the paper Fast multi-precision computation of some Euler products by the same authors
and which appeared in Math. Comp. 90 (2021), no. 331, pages 2247–2265. The modifications concerns the
numbering and the elements concerning the produced code.

1.2.1 1. Introduction
In formula (16) of [16], D. Shanks obtained the following closed expression to compute the Landau-Ramanujan con-
stant:

∏︁
𝑝≡3[4]

1

1− 1/𝑝𝑠
=

∏︁
𝑘≥0

(︂
𝜁(2𝑘𝑠)(1− 2−2𝑘𝑠)

𝐿(2𝑘𝑠, 𝜒1,4)

)︂1/2𝑘+1

(1.1)

where 𝑠 > 1 and 𝜒1,4 is the (only) non-principal Dirichlet character modulo 4. Since both 𝜁(2𝑘𝑠) and 𝐿(2𝑘𝑠, 𝜒1,4) are
1+𝒪(1/2𝑠2

𝑘

), we only need to compute 𝒪(log𝐷) values of 𝐿-functions (including the Riemann 𝜁-function) to obtain
𝐷 decimal digits. In this paper, we generalize this process in several directions, but a main feature of our work is that
it applies only to Euler products over primes belonging to some special subsets of𝐺 = (Z/𝑞Z)× that we define below.
We obtain closed formulas involving only values of 𝐿-functions of Dirichlet characters for rational Euler products over
primes in these special sets and deduce fast ways to compute a more restricted class of such products. Let us first
introduce the players.

Definition 1.

Two elements 𝑔1 and 𝑔2 of the abelian group𝐺 are said to be lattice-invariant if and only if they generate the same
group. This defines an equivalence relation.

We denote the set of lattice invariant classes by𝐺♯ and the set of cyclic subgroups of𝐺 by G . The map between G
and 𝐺♯ which, to a subgroup, associates the subset of its generators, is one-to-one.

The cardinality of 𝐺♯ can be swiftly inferred from Theorem 3 of [18] or from Theorem 1 of [19], both by L. Tóth.
When 𝒜 is a subset of 𝐺 = (Z/𝑞Z)×, we define ⟨𝒜⟩ to be the (multiplicative) subgroup generated by 𝒜.

For any Dirichlet character 𝜒 modulo 𝑞 and any parameter 𝑃 ≥ 2, we define

𝐿𝑃 (𝑠, 𝜒) =
∏︁
𝑝≥𝑃

(1− 𝜒(𝑝)/𝑝𝑠)−1
(1.2)

and correspondingly 𝜁𝑃 (𝑠) =
∏︀
𝑝≥𝑃 (1− 1/𝑝𝑠)−1.

Given 𝐾 a subgroup of 𝐺 = (Z/𝑞Z)×, we denote by 𝐾⊥ the subgroup of Dirichlet characters modulo 𝑞 that take the
value 1 on 𝐾. When 𝑠 is a real number, the number

∏︀
𝜒∈𝐾⊥ 𝐿𝑃 (𝑠, 𝜒) is indeed a positive real number because, when

𝜒 belongs to 𝐾⊥, so does 𝜒.

Here is the central theorem of this paper.

Theorem 2. Let 𝑞 be some modulus and 𝒜 be a lattice-invariant class of 𝐺 = (Z/𝑞Z)×. Let 𝐹,𝐻 ∈ R[𝑋] be two
polynomials satisfying 𝐹 (0) = 𝐻(0) = 1 and let ∆ ≥ 1 be an integer such that (𝐹 (𝑋) −𝐻(𝑋))/𝑋Δ ∈ R[𝑋]. Let
𝛽 ≥ 2 be an upper bound for the maximum modulus of the inverses of the roots of 𝐹 and of𝐻 . Let 𝜎1, 𝜎2, · · · , 𝜎deg𝐹
be the roots of 𝐹 (a multiple root appears as many times as its multiplicity), and similarly, let 𝜌1, 𝜌2, · · · , 𝜌deg𝐻 be the
roots of 𝐻 . For any non-negative integer 𝑑, we set

𝑠𝐻/𝐹 (𝑑) =
∑︁

1≤𝑖≤deg𝐻

𝜌−𝑑𝑖 −
∑︁

1≤𝑗≤deg𝐹

𝜎−𝑑
𝑗 . (1.3)

1.2. Fast multi-precision computation of some Euler products 7

sage-euler-product, Release 0.0.3

Let 𝑃 and 𝑠 > 1/∆ be two real parameters such that 𝑃 𝑠 ≥ 2𝛽. We define, for any cyclic subgroup 𝐾 of 𝐺 and any
positive integer 𝑚,

𝐶A (𝐾,𝑚,𝐹/𝐻) =
∑︁
𝑡|𝑚

𝜇(𝑡)𝑠𝐻/𝐹 (𝑚/𝑡)
∑︁
𝐿∈G ,

𝐿[𝑡]=⟨A ⟩,
𝐾⊂𝐿

𝜇(|𝐿|/|𝐾|)
|𝐺/𝐾| (1.4)

where 𝐿[𝑡] = {𝑥𝑡, 𝑥 ∈ 𝐿} and ⟨A ⟩ is the subgroup generated by A . We have

∏︁
𝑝≥𝑃,

𝑝+𝑞Z∈𝒜

𝐹 (1/𝑝𝑠)

𝐻(1/𝑝𝑠)
=

∏︁
𝑚≥Δ

∏︁
𝐾∈G

(︂ ∏︁
𝜒∈𝐾⊥

𝐿𝑃 (𝑚𝑠, 𝜒)

)︂𝐶A (𝐾,𝑚,𝐹/𝐻)/𝑚

. (1.5)

For any positive real-valued parameter 𝑀 , the following bound holds true:

± log
∏︁

𝑚≥𝑀+1

∏︁
𝐾∈G

(︂ ∏︁
𝜒∈𝐾⊥

𝐿𝑃 (𝑚𝑠, 𝜒)

)︂𝐶A (𝐾,𝑚,𝐹/𝐻)

𝑚

≤ 4(deg𝐹 + deg𝐻)|G |2(𝑠+ 𝑃)

(︂
𝛽

𝑃 𝑠

)︂𝑀+1

.

(1.6)

In the case 𝐻/𝐹 = 1 − 𝑋 , the relevant identity is proved in 18 and is the heart of this paper. Our result applies in
particular to 𝒜 = {1} and to 𝒜 = {−1}. When 𝑞 = 4 and 𝒜 = {−1}, we readily find that only 𝑡 = 1 matters in (1.4),
that 𝐶{−1}({1}, 2𝑘, 1/(1 − 𝑋)) = −1/2 and that 𝐶{−1}({±1}, 2𝑘, 1/(1 − 𝑋)) = 1. On recalling Lemma 16, this
results in (1.1).

Remark 3. Lemma 21 ensures that we may select

𝛽 = max
(︁
2,

∑︁
1≤𝑘≤deg𝐹

|𝑎𝑘|,
∑︁

1≤𝑘≤deg𝐻

|𝑏𝑘|
)︁

when 𝐹 (𝑋) = 1+ 𝑎1𝑋 + . . .+ 𝑎𝛿𝑋
𝛿 and 𝐻(𝑋) = 1+ 𝑏1𝑋 + . . .+ 𝑏𝛿′𝑋

𝛿′ . Notice that our assumptions imply that
𝑏𝑖 = 𝑎𝑖 when 𝑖 < ∆.

Remark 4. The numbers 𝑠𝐻/𝐹 (𝑛) may be computed via the Girard-Newton relations recalled in Lemma 19.

Remark 5. We prove in Lemma 22 that, when 𝐾 and A are fixed, the quantity∑︁
𝐿∈G ,

𝐿[𝑡]=⟨A ⟩,
𝐾⊂𝐿

𝜇(|𝐿|/|𝐾|)

depends only on gcd(𝑡, 𝜙(𝑞)) .

Remark 6. We have 𝐶A (𝐾,𝑚,𝐹/𝐻) = −𝐶A (𝐾,𝑚,𝐻/𝐹), a property we shall use to simplify the typography.

Remark 7. There is some redundancy in our formula as a same character 𝜒may appear in several sets𝐾⊥ (for instance,
the principal character appears in all of them). Disentangling these contributions leads to a slightly more complicated
formula. We first have to introduce, for any cyclic subgroup 𝑆 , the subset 𝑆⊥∘ ⊂ 𝑆⊥ constituted of those elements
that do not belong to any 𝑇⊥ , for 𝑇 ⊊ 𝑆. It can be readily checked that any 𝐾⊥ is the union of 𝑆⊥∘ where 𝑆 ranges
the subgroups that are included in 𝐾. We then define

𝐶∘
A (𝑆,𝑚,𝐹/𝐻) =

∑︁
𝑡|𝑚

𝜇(𝑡)𝑠𝐻/𝐹 (𝑚/𝑡)
∑︁
𝐿∈G ,

𝐿[𝑡]=⟨A ⟩,
𝑆⊂𝐿

𝜙(|𝐿|/|𝑆|)
|𝐺/𝑆|

.
(1.7)

8 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

Formula (1.5) becomes:

∏︁
𝑝≥𝑃,

𝑝+𝑞Z∈𝒜

𝐹 (1/𝑝𝑠)

𝐻(1/𝑝𝑠)
=

∏︁
𝑚≥Δ

∏︁
𝑆∈G

(︂ ∏︁
𝜒∈𝑆⊥∘

𝐿𝑃 (𝑚𝑠, 𝜒)

)︂𝐶∘
A (𝑆,𝑚,𝐹/𝐻)/𝑚

and the bound (1.6) holds to estimate the tail of this product, as we only shuffled terms with a fixed index 𝑚.

Super fast evaluations

Corollary 8. For every positive integer 𝑚 , the constant 𝐶A (𝐾,𝑚, 1 − 𝑋) vanishes when one prime factor of 𝑚 is
coprime with 𝜙(𝑞) . As a consequence and under the hypotheses of Theorem 2 with ∆ = 1, the products∏︁

𝑝≥𝑃,
𝑝+𝑞Z∈𝒜

(︂
1− 1

𝑝𝑠

)︂

may be computed by 𝒪((log𝐷)𝑟) computations of 𝐿 -functions to get 𝐷-decimal digits, where 𝑟 is the number of
prime factors of 𝜙(𝑞) . The implied constant in the 𝒪-symbol may depend on 𝑞 .

This leads to very fast computations, and we were for instance able to produce 100 (resp.,1000, resp.,5000) digits of
these products when 𝑞 = 3 in a third of a second (resp.,12 seconds, resp.,35 minutes with 𝑃 = 400) on a usual desktop
computer. See the implementation notes at the end of this paper. Notice however that the number of 𝐿-values required
is not the only determinant: when 𝑞 increases, the dependence in 𝑞 matters as the character group increases in size, and
when the required precision increases, each computation of an 𝐿-value may take a long time. We do not address the
issue of these computations here. We present some timing data at the end of this paper.

Proof of Corollary 8. Lemma 16 tells us that 𝐶A (𝐾,𝑚, 1 − 𝑋) vanishes when one prime factor of 𝑚 is coprime
with 𝜙(𝑞). Let us decompose 𝜙(𝑞) in prime factors: 𝜙(𝑞) = 𝑝𝛼1

1 · · · 𝑝𝛼𝑟
𝑟 . Any integer 𝑚 ≤ 𝑀 such that all its prime

factors divide 𝑞, can be written as𝑚 = 𝑝𝛽1

1 · · · 𝑝𝛽𝑟
𝑟 with 𝛽𝑖 ≤ (log𝑀)/ log 𝑝𝑖 for 𝑖 ≤ 𝑟. In particular, there are at most

((log𝑀)/ log 2)𝑟 such integers. By (1.6), the contribution of the integers𝑚 > 𝑀 to the Euler product to be computed
is 1 +𝒪((𝛽/𝑃 𝑠)𝑀), which is 1 +𝒪(2−𝑀) by the assumption 𝑃 𝑠 ≥ 2𝛽. We want this error term to be 1 +𝒪(10−𝐷)
to get about 𝐷 +𝒪(1) decimal digits. This is ensured by 𝑀 log 2 ≥ 𝐷 log 10, i.e. it is enough to take 𝑀 = 4𝐷.

In order to extend this property to other Euler products, many of the coefficients 𝐶A (𝐾,𝑚,𝐹/𝐻) should vanish
when𝑚 varies. This is however not likely to happen, except when 𝐹/𝐻 is a product/quotient of cyclotomic polynomi-
als. Indeed the coefficients 𝑠𝐻/𝐹 (𝑚) satisfy a linear recurrence (of degree at most max(deg𝐹,deg𝐻)) and as such are
expected to grow exponentially fast if they are not roots of unity. When for instance the coefficients of the recurrence
belong to some number field, this is proved by Evertse in [3] and independently by van der Poorten and Schlickewei
in [20]. This is the case where we may expect cancellations to happen. Since the sum defining 𝐶A (𝐾,𝑚,𝐹/𝐻) is of
the form

∑︀
𝑡|𝑚 𝜇(𝑡)𝑟0(𝑡)𝑠𝐻/𝐹 (𝑚/𝑡) for some function 𝑟0(𝑡) that remains bounded (it takes only a finite set of values),

it is dominated by the term 𝑡 = 1 when 𝑚 is large enough; no cancellation due to the Möbius factor can be expected
either. We are then left with the case of cyclotomic polynomials, but they can be easily dealt with using Corollary 8;
indeed, if we denote by Φ𝑛 the 𝑛-th cyclotomic polynomial, the identity

∏︀
𝑑|𝑛 Φ𝑑(𝑋) = 𝑋𝑛 − 1 gets inverted to

Φ𝑛(𝑋) =
∏︀
𝑑|𝑛(𝑋

𝑑 − 1)𝜇(𝑛/𝑑).

A Sage script

The material of this paper has been used to write the Sage script using Python 3.

The function get_euler_products(q, s, F, H, nbdecimals) gives all these Euler products. The polynomi-
als 𝐹 and 𝐻 are to be given as polynomial expressions with the variable 𝑥. The special function get_vs(q, s,
nbdecimals) gives all the Euler products of Corollary 8.

1.2. Fast multi-precision computation of some Euler products 9

sage-euler-product, Release 0.0.3

Some historical pointers

D. Shanks in [14] (resp. [15], resp. [17]) has already been able to compute an Euler product over primes congruent
to 1 modulo 4 (resp. to 1 modulo 8 in both instances), by using an identity (Lemma of section 2 for [14], Equation (5)
in [15] and the Lemma of section 3 in [17]) that is a precursor of our Lemma 19.

In these three examples, the author has only been able to compute the first five digits, and this is due to three facts: the
lack of an interval arithmetic package at that time, the relative weakness of the computers and the absence of a proper
study of the error term. We thus complement these results by giving the first hundred decimals.

Complementary to the published papers, three influent preprints on how to compute Euler products with high accuracy
have been floating on the web: [5] a memo started in 1990 in its 1996 version by Ph. Flajolet and I. Vardi, [1] by H.
Cohen and [7] by X. Gourdon and P. Sebah. Comparing the desired constant with zeta-values is the overarching idea.
The set of zeta-values is extended to𝐿-values of (some) quadratic characters in the three, in some way or another, and to
the values of Dedekind zeta-function in [1]. No complete error term analysis is presented, sometimes because the series
used are simple enough to make this analysis rather easy. These three sources also deal with constants that are sums
over primes and a similar extension of our work is possible, but kept for later. It should be noticed that Equation (20)
from [5] is in fact the formula given as Equation (16) in [16] for the Landau-Ramanujan constant.

On the methodology

We decided to prove Theorem 2 directly, by giving the formula and shuffling terms. This gives a short and self-
contained proof. However, we did not come up with the coefficients 𝐶A (𝐾,𝑚,𝐹/𝐻) by some lucky strike! There is
a path leading from abelian field theory to our expression that is much closer to D. Shanks’s approach. We say more
on this subject in section 4.

Application to some constants

This paper has been inspired by the wish to compute with high numerical precision two constants that appear in the
paper [6] by É. Fouvry, C. Levesque and M. Waldschmidt. In the notation of that paper, they are

𝛼
(3)
0 =

1

31/4
√
2

∏︁
𝑝≡2[3]

(︂
1− 1

𝑝2

)︂−1/2

and

𝛽0 =
31/4

√
𝜋

25/4
log(2 +

√
3)1/4

Γ(1/4)

∏︁
𝑝≡5,7,11[12]

(︂
1− 1

𝑝2

)︂−1/2

. (1.8)

Both occur in number theory as densities. The number of integers 𝑛 of the shape 𝑛 = 𝑥2 − 𝑥𝑦 + 𝑦2, where 𝑥 and
𝑦 are integers (these are the so-called Loeschian numbers, see the sequence A003136 entry in [12]) is asymptotically
approximated by

𝑁(𝑥) = 𝛼
(3)
0

𝑥(1 + 𝑜(1))√
log 𝑥

. (1.9)

This motivates our interest in the first constant. The second one arises in counting the number of Loeschian numbers
that are also sums of two squares (see sequence A301430 entry of [12]), namely we have

𝑁 ′(𝑥) = 𝛽0
𝑥(1 + 𝑜(1))

(log 𝑥)3/4
.

From the sequence A301429 entry in [12], we know that 𝛼(3)
0 = 0.638909 . . . but we would like to know (many!)

more digits. Similarly it is known that 𝛽0 = 0.30231614235

Corollary 9. We have

𝛼
(3)
0 = 0.63890 94054 45343 88225 49426 74928 24509 37549 75508 02912

33454 21692 36570 80763 10027 64965 82468 97179 11252 86643 · · ·

10 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

and
𝛽0 = 0.30231 61423 57065 63794 77699 00480 19971 56024 12795 18936

96454 58867 84128 88654 48752 41051 08994 87467 81397 92727 · · ·

This follows from Theorem 2 with the choices 𝑞 = 3 and 𝒜 = {2} for 𝛼(3)
0 , and 𝑞 = 12 and 𝒜 = {5, 7, 11} for 𝛽0.

The other parameters are uniformly selected as 𝐹 (𝑋) = 1−𝑋2, 𝐻(𝑋) = 1, ∆ = 2, 𝛽 = 2 and 𝑠 = 1.

Corollary 10 (Shanks’ Constant). We have

∏︁
𝑝≡1[8]

(︂
1− 4

𝑝

)︂(︂
𝑝+ 1

𝑝− 1

)︂2

= 0.95694 53478 51601 18343 69670 57273 89182 87531

74977 29139 14789 05432 60424 60170 16444 88885

94814 40512 03907 95084 · · ·

As a consequence Shanks’ constant satisfies

𝐼 =
𝜋2

16 log(1 +
√
2)

∏︁
𝑝≡1[8]

(︂
1− 4

𝑝

)︂(︂
𝑝+ 1

𝑝− 1

)︂2

= 0.66974 09699 37071 22053 89224 31571 76440 66883 70157 43648

24185 73298 52284 52467 99956 45714 72731 50621 02143 59373 · · ·

We deduce this Corollary from Theorem 2 by selecting the parameters 𝑞 = 8, 𝒜 = {1}, 𝐹 (𝑋) = 1−2𝑋−7𝑋2−4𝑋3,
𝐻(𝑋) = 1−2𝑋+𝑋2, 𝑠 = 1, ∆ = 2 and 𝛽 = 4. As explained in [15], the number of primes ≤ 𝑋 of the form𝑚4+1
is conjectured to be asymptotically equal to 𝐼 · 𝑋1/4/ log𝑋 . The name “Shanks’ constant” comes from Chapter 2,
page 90 of [4].

When using the script that we introduce below, this value is obtained by multiplying by 𝜋2

16 log(1+
√
2)

the value obtained
with the call

get_euler_products(8, 1, 1-2*x-7*x^2-4*x^3, 1-2*x+x^2, 110, 50, 2, 1).

A note is required here: the script evaluates loosely the required working precision in order to get say 100 correct digits
at the end. The results are however presented with the precision obtained, and if we had been asking initially for 100
decimal digits, the script would issue only 94 of them. We could have implemented a mechanism that increases the
precision until the result satisfies the request, but we have preferred to let the users increase the precision by themselves.
When asking for 110 decimal digits, the script is able to compute 106 of them. We can get a thousand decimals for this
constant in about 2 minutes on a usual desktop computer (by asking for 1010 decimal digits), see the implementation
notes at the end of this paper.

Corollary 11 (Lal’s Constant). We have∏︁
𝑝≡1[8]

𝑝(𝑝− 8)

(𝑝− 4)2
= 0.88307 10047 43946 67141 78342 99003 10853 46768

88834 88097 34707 19295 15939 52119 46990 65659

68857 99383 28603 79164 · · ·

As a consequence Lal’s constant satisfies

𝜆 =
𝜋4

27 log2(1 +
√
2)

∏︁
𝑝≡1[8]

(︂
𝑝+ 1

𝑝− 1

)︂4(︂
1− 8

𝑝

)︂

=
𝜋4

27 log2(1 +
√
2)

∏︁
𝑝≡1[8]

(︂
1− 4

𝑝

)︂2(︂
𝑝+ 1

𝑝− 1

)︂4 ∏︁
𝑝≡1[8]

𝑝(𝑝− 8)

(𝑝− 4)2
= 0.79220 82381 67541 66877 54555 66579 02410 11289 32250 98622

11172 27973 45256 95141 54944 12490 66029 53883 98027 52927 · · ·

1.2. Fast multi-precision computation of some Euler products 11

sage-euler-product, Release 0.0.3

We deduce the first value given in this Corollary by using Theorem :ref`2<2>` with the parameters 𝑞 = 8, 𝒜 = {1},
𝐹 (𝑋) = 1 − 8𝑋 , 𝐻(𝑋) = 1 − 8𝑋 + 16𝑋2, 𝑠 = 1, ∆ = 2 and 𝛽 = 8. The value of Lal’s constant 𝜆 is then
deduced by combining the value obtained in Corollary 10 together with this one. This splitting of the computation
in two introduces smaller polynomials and this leads to a lesser running time. As explained in [17], the number of
primes ≤ 𝑋 of the form (𝑚 + 1)2 + 1 and such that (𝑚 − 1)2 + 1 is also prime, is conjectured to be asymptotic to
𝜆 · 𝑋1/2/(log𝑋)2. The name “Lal’s Constant” comes from the papers [8] and [17]. When using the script that we
introduce below, the first value is obtained with the call

get_euler_products(8, 1, 1-8*x, 1-8*x+16*x^2, 110, 50, 2, 1).

If this call requires about 2 seconds on a usual desktop computer, this time increases to 4 minutes when we ask for a
thousand digits. We did not try to get 5000 digits as we did for the products of Corollary 8.

We close this section by mentioning another series of challenging constants. In [10], P. Moree computes inter alia the
series of constants 𝐴𝜒 defined six lines after Lemma 3, page 452, by

𝐴𝜒 =
∏︁
𝑝≥2

(︂
1 +

(𝜒(𝑝)− 1)𝑝

(𝑝2 − 𝜒(𝑝))(𝑝− 1)

)︂
, (1.10)

where 𝜒 is a Dirichlet character. Our theory applies only when 𝜒 is real valued.

A closed formula for primitive roots

Let us recall that a primitive root 𝑛 modulo 𝑞 is an integer such that the class of 𝑛 generates 𝐺 = (Z/𝑞Z)×. It is a
classical result that such an element exists if and only if 𝑞 is equal to 2 or 4, or is equal to a prime power of an odd
prime or to twice such a prime power.

Corollary 12. Let A0 be the subset of 𝐺 = (Z/𝑞Z)× consisting of all the multiplicative generators of 𝐺. Assume 𝑞 is
such that such an A0 is not empty. For any real parameter 𝑃 ≥ 2 and 𝑠 > 1, we have

𝜁𝑃 (𝑠; 𝑞,A0) =
∏︁
𝑚|𝑞∞

∏︁
𝑆∈G

(︂ ∏︁
𝜒∈𝐾⊥∘

𝐿𝑃 (𝑚𝑠, 𝜒)

)︂𝑒(𝑚,𝑞,𝑆)
,

where 𝑚|𝑞∞ means that all the prime factors of 𝑚 divide 𝑞 and where 𝑒(𝑚, 𝑞, 𝑆) = |𝑆|𝜙(𝑞/|𝑆|)
𝑚𝜙(𝑞) .

Proof. Indeed, since A0 generates 𝐺, the only index 𝑡 in (1.7) is 𝑡 = 1. Hence, only 𝐿 = 𝐺 is possible.

Thanks

The authors thank M. Waldschmidt for having drawn their attention to this question, P. Moree and É. Fouvry for
helpful discussions on how to improve this paper and X. Gourdon for exchanges concerning some earlier computations.
The referees are also to be warmly thanked for their very careful reading and for ideas on how to improve both the
presentation and the corresponding script.

1.2.2 2. Proof of Theorem 2 when 𝐹/𝐻 = 1/(1−𝑋)

We follow the notation introduced in (1.4). Since here 𝐹/𝐻 = 1/(1 − 𝑋), this leads us to consider, for any cyclic
subgroup 𝐾 ∈ G , any class A in 𝐺♯ and any positive integer 𝑚, the coefficient

𝐶A (𝐾,𝑚, 1−𝑋) =
∑︁
𝑡|𝑚

𝜇(𝑡)
∑︁
𝐿∈G ,

𝐿[𝑡]=⟨A ⟩

𝜇(|𝐿|/|𝐾|)
|𝐺/𝐾| (1.11)

where 𝐿[𝑡] = {𝑥𝑡, 𝑥 ∈ 𝐿}. Notice that it is also a cyclic subgroup of 𝐺. Let us first note a simple property.

Lemma 13. In a finite cyclic group 𝐿, the map that associates to a subgroup of 𝐿 its cardinality is a one-to-one map
between the set of divisors of |𝐿| and the set of its subgroups. Furthermore, any subgroup of a cyclic group is cyclic.

12 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

Proof. We can assume that 𝐿 = (Z/ℓZ,+). For each 𝑑|ℓ, the unique subgroup of order 𝑑 is {(ℓ/𝑑)𝑛, 0 ≤ 𝑛 ≤ 𝑑− 1}.

Here is the fundamental property satisfied by these coefficients.

Proposition 14. For any positive integer ℓ, any prime 𝑝 and any lattice-invariant class A , we have∑︁
ℎ𝑚=ℓ

∑︁
𝐾∈G ,
𝜒∈𝐾⊥

𝜒
(︀
𝑝ℎ

)︀
𝐶A (𝐾,𝑚, 1−𝑋) = 11𝑝∈A .

Proof. Let 𝑆 be the left-hand side sum to be evaluated. Let 𝐵 be the subgroup generated by 𝑝. By using the orthogo-
nality of characters, we readily obtain

𝑆 =
∑︁
ℎ𝑚=ℓ

∑︁
𝐾∈G ,

𝐵[ℎ]⊂𝐾

|𝐺/𝐾|𝐶A (𝐾,𝑚, 1−𝑋).

Next, we introduce the expression given in (1.11), shuffle the summations and get

𝑆 =
∑︁
ℎ𝑚=ℓ

∑︁
𝑡|𝑚

𝜇(𝑡)
∑︁
𝐿∈G ,

𝐿[𝑡]=⟨A ⟩

∑︁
𝐾∈G ,

𝐵[ℎ]⊂𝐾

𝜇(|𝐿|/|𝐾|).

By Lemma 13 and the Möbius function characteristic property, the last summation vanishes when 𝐵[ℎ] ̸= 𝐿 and takes
the value 1 otherwise. Since (𝐵[ℎ])[𝑡] = 𝐵[ℎ𝑡], this gives us

𝑆 =
∑︁
ℎ𝑚=ℓ

∑︁
𝑡|𝑚,

𝐵[ℎ𝑡]=⟨𝐴⟩

𝜇(𝑡).

We continue in a more classical way:

𝑆 =
∑︁
𝑎𝑡ℎ=ℓ,

𝐵[ℎ𝑡]=⟨𝐴⟩

𝜇(𝑡) =
∑︁
𝑎𝑏=ℓ,

𝐵[𝑏]=⟨𝐴⟩

∑︁
𝑡|𝑏

𝜇(𝑡) = 11𝐵=⟨𝐴⟩,

concluding the proof .

Corollary 15. For any prime 𝑝, any positive real number 𝑠 and any lattice-invariant class A , we have

∏︁
𝑚≥1

∏︁
𝐾∈G

(︂ ∏︁
𝜒∈𝐾⊥

(︀
1− 𝜒(𝑝)𝑝−𝑚𝑠

)︀)︂−𝐶A (𝐾,𝑚,1−𝑋)/𝑚

=

{︃
(1− 𝑝−𝑠)−1 when 𝑝 ∈ ⟨A ⟩,
1 otherwise.

Proof. We first check that, for any positive integer 𝑚 and any subgroup 𝐾, we have

exp
∑︁
𝜒∈𝐾⊥

∑︁
ℎ≥1

𝜒(𝑝ℎ)

ℎ𝑝𝑚ℎ𝑠
=

∏︁
𝜒∈𝐾⊥

(︂
1− 𝜒(𝑝)

𝑝𝑚𝑠

)︂−1

.

Since 𝑠 is a positive real number, the right-hand side is also positive, and so can be raised to some rational power, say
𝑐. The sum inside the exponential is also a real number and the equation exp𝑥 = 𝑦 leads obviously to exp(𝑐𝑥) = 𝑦𝑐.
The right-hand side of our lemma may thus be written exp𝑆(𝑝) where

𝑆(𝑝) =
∑︁
𝑚≥1

∑︁
𝐾∈G

∑︁
𝜒∈𝐾⊥

∑︁
ℎ≥1

𝜒(𝑝ℎ)𝐶A (𝐾,𝑚, 1−𝑋)

𝑚ℎ𝑝𝑚ℎ𝑠
.

We set ℓ = 𝑚ℎ and appeal to Proposition 14 to infer that

𝑆(𝑝) =
∑︁
ℓ≥1

1

ℓ𝑝ℓ𝑠
11𝑝∈A ,

1.2. Fast multi-precision computation of some Euler products 13

sage-euler-product, Release 0.0.3

from which our corollary follows readily.

Lemma 16. If 𝑚 has a prime factor that does not divide 𝜙(𝑞), we have 𝐶A (𝐾,𝑚, 1−𝑋) = 0.

Proof. When 𝐹/𝐻 = 1−𝑋 , we have 𝑠𝐻/𝐹 (𝑚) = −1 uniformly in 𝑚. If 𝑚 = 𝑚1𝑝
𝑎 for some 𝑚1 prime to 𝑝 and 𝑝

prime to the order 𝜙(𝑞) of𝐺, any divisor 𝑡 of𝑚 factors in 𝑡1𝑝𝑏 where 𝑡1|𝑚1 and 𝑏 ≤ 𝑎. The Möbius coefficient reduces
these choices to 𝑏 = 𝑎 or to 𝑏 = 𝑎− 1 and since we have 𝐿[𝑡] = 𝐿[𝑡1], both are possible. If we denote the contribution
of 𝑝𝑎𝑡1 to 𝐶A (𝐾,𝑚, 1−𝑋) by 𝑆1 say, the contribution or 𝑝𝑎−1𝑡1 is −𝑆1, and on pairing them we get zero.

Lemma 17. Let 𝑓 > 1 be a real parameter. We have

⃒⃒
log 𝜁𝑃 (𝑓)

⃒⃒
≤ 1 + 𝑃/(𝑓 − 1)

𝑃 𝑓
.

Proof. We use

log 𝜁𝑃 (𝑓) = −
∑︁
𝑝≥𝑃

∑︁
𝑘≥1

1

𝑘𝑝𝑘𝑓

hence, by using a comparison to an integral, we find that⃒⃒⃒
log 𝜁𝑃 (𝑓)

⃒⃒⃒
≤

∑︁
𝑛≥𝑃

1

𝑛𝑓
≤ 1

𝑃 𝑓
+

∫︁ ∞

𝑃

𝑑𝑡

𝑡𝑓
=

(︂
𝑓 − 1

𝑃
+ 1

)︂
1

(𝑓 − 1)𝑃 𝑓−1
.

Theorem 18. For every 𝑠 > 1 and every 𝑃 ≥ 2, we have

𝜁𝑃 (𝑠; 𝑞,𝒜) =
∏︁

𝑝+𝑞Z∈𝒜,
𝑝≥𝑃

(1− 𝑝−𝑠)−1 =
∏︁
𝑚≥1

∏︁
𝐾∈G

(︂ ∏︁
𝜒∈𝐾⊥

𝐿𝑃 (𝑚𝑠, 𝜒)

)︂𝐶A (𝐾,𝑚,1−𝑋)/𝑚

.

Proof. This is a simple consequence of Corollary 15. Indeed, we may shuffle our series to our fancy by the absolute
summability ensured by the condition 𝑠 > 1 and the bounds |𝐶A (𝐾, 𝑘)/𝑘| ≤ |𝐺|, as well as |G | ≤ |𝐺|. This last
bound follows from the fact that there are at most as many cyclic subgroups as there are possible generators.

1.2.3 3. Proof of Theorem 2 in general
Let us recall the Witt decomposition. The readers will find in Lemma 1 of [9] a result of the same flavour. We have
simply modified the proof and setting as to accommodate polynomials having real numbers for coefficients.

Lemma 19. Let 𝐹 (𝑡) = 1+ 𝑎1𝑡+ . . .+ 𝑎𝛿𝑡
𝛿 ∈ R[𝑡] be a polynomial of degree 𝛿. Let 𝛼1, . . . , 𝛼𝛿 be the inverses of its

roots. Put 𝑠𝐹 (𝑘) = 𝛼𝑘1 + . . .+ 𝛼𝑘𝛿 . The 𝑠𝐹 (𝑘) are integers and satisfy the Newton-Girard recursion

𝑠𝐹 (𝑘) + 𝑎1𝑠𝐹 (𝑘 − 1) + . . .+ 𝑎𝑘−1𝑠𝐹 (1) + 𝑘𝑎𝑘 = 0, (1.12)

where we have defined 𝑎𝛿+1 = 𝑎𝛿+2 = . . . = 0. Put

𝑏𝐹 (𝑘) =
1

𝑘

∑︁
𝑑|𝑘

𝜇(𝑘/𝑑)𝑠𝐹 (𝑑). (1.13)

Let 𝛽 ≥ 1 be such that 𝛽 ≥ max𝑗 |1/𝛼𝑗 |. When 𝑡 belongs to any segment ⊂ (−𝛽, 𝛽), we have

𝐹 (𝑡) =

∞∏︁
𝑗=1

(1− 𝑡𝑗)𝑏𝐹 (𝑗) (1.14)

14 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

where the convergence is uniform in the given segment.

Proof. Since we follow the proof of Lemma 1 of [9], we shall be rather sketchy. We write 𝐹 (𝑡) =
∏︀
𝑖(1 − 𝛼𝑖𝑡). By

logarithmic differentiation, we obtain

𝑡𝐹 ′(𝑡)

𝐹 (𝑡)
=

∑︁
𝑖

𝛼𝑖𝑡

1− 𝛼𝑖𝑡
=

∑︁
𝑘≥1

𝑠𝐹 (𝑘)𝑡
𝑘.

This series is absolutely convergent in any disc |𝑡| ≤ 𝑏 < 1/𝛽 where 𝛽 = max𝑗(1/|𝛼𝑗 |). We proceed by expressing
𝑠𝐹 in terms of 𝑏𝐹 via (1.13) in a disc of radius 𝑏 < 1/𝛽. After some shuffling of the terms, we reach the expression

𝑡𝐹 ′(𝑡)

𝐹 (𝑡)
=

∑︁
𝑗≥1

𝑏𝐹 (𝑗)
𝑗𝑡𝑗

1− 𝑡𝑗
.

The lemma follows readily by integrating the above relation.

How does the mathematician E. Witt enter the scene? In the paper [21], (11) therein is a decomposition that is the
prototype of the above expansion.

Lemma 20. We use the hypotheses and notation of Lemma 19. Let 𝛽 ≥ 2 be larger than the inverse of the modulus of
all the roots of 𝐹 (𝑡). We have

|𝑏𝐹 (𝑘)| ≤ 2 deg𝐹 · 𝛽𝑘/𝑘.

Proof. We clearly have |𝑠𝐹 (𝑗)| ≤ deg𝐹 · 𝛽𝑗 , so that

|𝑏𝐹 (𝑘)| ≤
deg𝐹

𝑘

∑︁
1≤𝑗≤𝑘

𝛽𝑗 ≤ deg𝐹

𝑘
𝛽
𝛽𝑘 − 1

𝛽 − 1

≤ deg𝐹

𝑘

𝛽𝑘

1− 1/𝛽
≤ 2 deg𝐹

𝛽𝑘

𝑘
.

There are numerous easy upper estimates for the inverse of the modulus of all the roots of 𝐹 (𝑡) in terms of its coeffi-
cients. Here is a simplistic one.

Lemma 21. Let 𝐹 (𝑋) = 1 + 𝑎1𝑋 + . . . + 𝑎𝛿𝑋
𝛿 be a polynomial of degree 𝛿. Let 𝜌 be one of its roots. Then either

|𝜌| ≥ 1 or 1/|𝜌| ≤ |𝑎1|+ |𝑎2|+ . . .+ |𝑎𝛿|.

Proof. On noticing that

(1/𝜌)𝛿 = −𝑎1(1/𝜌)𝛿−1 − 𝑎2(1/𝜌)
𝛿−2 − . . .− 𝑎𝛿,

the conclusion follows.

Lemma 22. The sum
∑︀
𝐿∈ℒ 𝜇(|𝐿|/|𝐾|) where

ℒ = {𝐿 ∈ G /𝐿[𝑡] = ⟨A ⟩ and 𝐾 ⊂ 𝐿}

depends only on gcd(𝑡, 𝜙(𝑞)).

Proof. Let us call this quantity 𝑟0(𝑡). We first check that it depends only on 𝑡 mod 𝜙(𝑞): this follows from the fact
that the map 𝑥 ↦→ 𝑥𝜙(𝑞) reduces to the identity over 𝐺. Secondly, any prime factor of 𝑡, say 𝑝′, that is prime to 𝜙(𝑞),
may be removed from 𝑡, i.e. 𝑟0(𝑡) = 𝑟0(𝑡/𝑝

′): the map 𝑥 ↦→ 𝑥𝑝
′ is one-to-one in 𝐿.

1.2. Fast multi-precision computation of some Euler products 15

sage-euler-product, Release 0.0.3

The lemma is an immediate consequence of these two remarks.

Proof of Theorem 2 . The proof requires several steps. The very first one is a direct consequence of (1.14), which leads
to the identity

𝐹 (𝑡)

𝐻(𝑡)
=

∞∏︁
𝑗=Δ

(1− 𝑡𝑗)𝑏𝐹 (𝑗)−𝑏𝐻(𝑗). (1.15)

The absence of the term with 𝑗 < ∆ is due to our assumption that (𝐹 (𝑋) − 𝐻(𝑋))/𝑋Δ ∈ R[𝑋]. Up to this point
(1.15) is only established as a formal identity. Our second step is to establish (1.15) for all 𝑡 ∈ C with |𝑡| < 1/𝛽. By
Lemma 20, we know that |𝑏𝐹 (𝑗)− 𝑏𝐻(𝑗)| ≤ 4max(deg𝐹,deg𝐻)𝛽𝑗/𝑗. Therefore, for any bound 𝐽 , we have

∑︁
𝑗≥𝐽+1

|𝑡𝑗 ||𝑏𝐹 (𝑗)− 𝑏𝐻(𝑗)| ≤ 4max(deg𝐹,deg𝐻)
|𝑡𝛽|𝐽+1

(1− |𝑡𝛽|)(𝐽 + 1)
, (1.16)

as soon as |𝑡| < 1/𝛽. We thus have

𝐹 (𝑡)

𝐻(𝑡)
=

∏︁
Δ≤𝑗≤𝐽

(1− 𝑡𝑗)𝑏𝐹 (𝑗)−𝑏𝐻(𝑗) × 𝐼1, (1.17)

where | log 𝐼1| ≤ 4max(deg𝐹,deg𝐻)|𝑡𝛽|𝐽+1/[(1 − |𝑡𝛽|)(𝐽 + 1)]. Now that we have the expansion (1.17) for each
prime 𝑝, we may combine them. We readily get∏︁

𝑝≥𝑃,
𝑝+𝑞Z∈𝒜

𝐹 (1/𝑝𝑠)

𝐻(1/𝑝𝑠)
=

∏︁
𝑝≥𝑃,

𝑝+𝑞Z∈𝒜

∏︁
Δ≤𝑗≤𝐽

(1− 𝑝−𝑗𝑠)𝑏𝐹 (𝑗)−𝑏𝐻(𝑗) × 𝐼2,

where 𝐼2 satisfies

log 𝐼2| ≤ 4max(deg𝐹,deg𝐻)
∑︁
𝑝≥𝑃

𝛽𝐽+1

1− 𝛽/𝑃 𝑠
1

(𝐽 + 1)𝑝(𝐽+1)𝑠

≤ 4max(deg𝐹,deg𝐻)𝛽𝐽+1

(1− 𝛽/𝑃 𝑠)(𝐽 + 1)

(︂
1

𝑃 (𝐽+1)𝑠
+

∫︁ ∞

𝑃

𝑑𝑡

𝑡(𝐽+1)𝑠

)︂
≤ 4max(deg𝐹,deg𝐻)(𝛽/𝑃 𝑠)𝐽𝛽

(1− 𝛽/𝑃 𝑠)(𝐽 + 1)

(︂
1

𝑃 𝑠
+

1

𝐽𝑠+ 𝑠− 1

)︂
,

since 𝑃 ≥ 2 and 𝐽 ≥ 3. Letting 𝐽 go to infinity, we see that when 𝑃 𝑠 > 𝛽 and 𝑠 > 1/∆,∏︁
𝑝≥𝑃,

𝑝+𝑞Z∈𝒜

𝐹 (1/𝑝𝑠)

𝐻(1/𝑝𝑠)
=

∏︁
𝑗≥Δ

∏︁
𝑝≥𝑃,

𝑝+𝑞Z∈𝒜

(1− 𝑝−𝑗𝑠)𝑏𝐹 (𝑗)−𝑏𝐻(𝑗) =
∏︁
𝑗≥2

𝜁𝑃 (𝑗𝑠; 𝑞,A)𝑏𝐻(𝑗)−𝑏𝐹 (𝑗)

in the notation of Theorem 18. We use this theorem to infer that

∏︁
𝑝≥𝑃,

𝑝+𝑞Z∈𝒜

𝐹 (1/𝑝𝑠)

𝐻(1/𝑝𝑠)
=

∏︁
𝑗≥Δ

∏︁
𝑚≥1

∏︁
𝐾∈G

(︂ ∏︁
𝜒∈𝐾⊥

𝐿𝑃 (𝑚𝑗𝑠, 𝜒)

)︂𝐶A (𝐾,𝑚,1−𝑋)

𝑚 (𝑏𝐻(𝑗)−𝑏𝐹 (𝑗))

.

Notice that we have 𝑠𝐻(𝑗) − 𝑠𝐹 (𝑗) = 0 (and hence 𝑏𝐻(𝑗) − 𝑏𝐹 (𝑗) = 0) when 𝑗 < ∆ by our assumption on ∆.
Let us glue the variables 𝑚 and 𝑗 in 𝑛. On using the definitions (1.11) and (1.13), we see that the functions 𝑚 ↦→
𝐶A (𝐾,𝑚, 1 −𝑋)/𝑚 and 𝑗 ↦→ (𝑏𝐻(𝑗) − 𝑏𝐹 (𝑗)) are of the form (11 ⋆ 𝑟)(𝑚)/𝑚, respectively (𝜇 ⋆ (𝑠𝐻 − 𝑠𝐹))(𝑗)/𝑗.
Hence

𝑛
∑︁
𝑗𝑚=𝑛

𝐶A (𝐾,𝑚, 1−𝑋)

𝑚
(𝑏𝐻(𝑗)− 𝑏𝐹 (𝑗)) =

∑︁
𝑡𝑑=𝑛

𝑟(𝑡)
(︀
𝑠𝐻(𝑑)− 𝑠𝐹 (𝑑)

)︀
.

16 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

We replace 𝑟(𝑡) by its value to conclude that this sum is 𝐶A (𝐾,𝑚,𝐹/𝐻), as defined by (1.4). We have reached

∏︁
𝑝≥𝑃,

𝑝+𝑞Z∈𝒜

𝐹 (1/𝑝𝑠)

𝐻(1/𝑝𝑠)
=

∏︁
𝑛≥Δ

∏︁
𝐾∈G

(︂ ∏︁
𝜒∈𝐾⊥

𝐿𝑃 (𝑛𝑠, 𝜒)

)︂𝐶A (𝐾,𝑛,𝐹/𝐻)

𝑛

. (1.18)

The final task is to control the tail of this product, but prior to that, we change the variable 𝑛 in (1.18) in 𝑚 again. To
control the tail, we check that, by Lemma 17,

± log
∏︁

𝑚≥𝑀+1

∏︁
𝐾∈G

(︂ ∏︁
𝜒∈𝐾⊥

𝐿𝑃 (𝑚𝑠, 𝜒)

)︂𝐶A (𝐾,𝑚,𝐹/𝐻)

𝑚

≤
∑︁

𝑚≥𝑀+1

∑︁
𝐾∈G

|𝐶A (𝐾,𝑚,𝐹/𝐻)|
𝑚

|𝐺/𝐾|𝑚𝑠− 1 + 𝑃

𝑃𝑚𝑠

≤
∑︁

𝑚≥𝑀+1

∑︁
𝐾∈G

∑︁
𝑡|𝑚

𝜇2(𝑡)|G |(deg𝐹 + deg𝐻)𝛽𝑚/𝑡
𝑚𝑠− 1 + 𝑃

𝑚𝑃𝑚𝑠

≤ (deg𝐹 + deg𝐻)|G |2
∑︁

𝑚≥𝑀+1

𝛽𝑚

1− (1/𝛽)

𝑠+ 𝑃

𝑃𝑚𝑠

≤ (deg𝐹 + deg𝐻)|G |2 𝛽(𝑠+ 𝑃)

𝛽 − 1

1

1− (𝛽/𝑃 𝑠)

(︂
𝛽

𝑃 𝑠

)︂𝑀+1

≤ 4(deg𝐹 + deg𝐻)|G |2(𝑠+ 𝑃)

(︂
𝛽

𝑃 𝑠

)︂𝑀+1

.

1.2.4 4. Link with two other sets of inequalities
In this section, we develop some elements that are contiguous to our topic.

A formula

Lemma 23. Let 𝑞 > 1 be a modulus. We set 𝐺0 to be a subgroup of 𝐺 = (Z/𝑞Z)× and 𝐺⊥
0 be the subgroup of

characters that take the value 1 on 𝐺0. For any integer 𝑏, we define ⟨𝑏⟩ to be the subgroup generated by 𝑏 modulo 𝑞.
We have ∏︁

𝜒∈𝐺⊥
0

𝐿𝑃 (𝑠, 𝜒) =
∏︁

𝐺0⊂𝐾⊂𝐺

∏︁
𝑝≥𝑃,

⟨𝑝⟩𝐺0=𝐾

(︁
1− 𝑝−|𝐾/𝐺0|𝑠

)︁−|𝐺/𝐾|
.

The right-hand side of this formula contains products of the kind we seek and, if we were to start from such a set of
formulas, the problem would be to invert them in some sense.

Proof. We note that
∏︀
𝜒∈𝐺⊥

0
(1− 𝜒(𝑝)𝑧)𝜒(𝑎) =

∏︀
𝜓∈𝐿̂(1− 𝜓(𝑝)𝑧)𝑓(𝜓) when ⟨𝑝⟩ = 𝐿 and where

𝑓(𝜓) =
∑︁
𝜒∈𝐺⊥

0 ,
𝜒|𝐿=𝜓

𝜒(𝑎).
(1.19)

The condition 𝜒 ∈ 𝐺⊥
0 can also be written as 𝜒|𝐺0 = 1, hence we can assume that 𝜓|(𝐿 ∩𝐺0) = 1. We write∏︁

𝜒∈𝐺⊥
0

(1− 𝜒(𝑝)𝑧)𝜒(𝑎) =
∏︁

𝜓′∈ ̂︂𝐿𝐺0,
𝜓′|𝐺0=1

(1− 𝜓(𝑝)𝑧)𝑓
′(𝜓′),

1.2. Fast multi-precision computation of some Euler products 17

sage-euler-product, Release 0.0.3

where

𝑓 ′(𝜓′) =
∑︁
𝜒∈𝐺⊥

0 ,
𝜒|𝐿𝐺0=𝜓

𝜒(𝑎).
(1.20)

When 𝑎 lies outside 𝐿𝐺0, this sum vanishes; otherwise it equals |𝐺/(𝐿𝐺0)|𝜓′(𝑎). The characters of 𝐿𝐺0 that are
trivial on 𝐺0 are canonically identified with the characters of the cyclic group (𝐿𝐺0)/𝐺0. We thus have∏︁

𝜓′∈ ̂︂𝐿𝐺0,
𝜓′|𝐺0=1

(1− 𝜓(𝑝)𝑧) = 1− 𝑧|(𝐿𝐺0)/𝐺0|,

and this proves our formula.

Notes on the scope of Lemma 23

From a metholodogical viewpoint, a moment’s thought discloses that two residue classes modulo 𝑞 that fall inside the
same lattice-invariant class cannot be distinguished by the set of identities of Lemma 23. This implies that we indeed
extract the maximum information from our setting. This could be formalized in the following manner: consider the
vector space F [𝐺] of functions from 𝐺 to C, and the sub-space generated by (11𝐺0

)𝐺0∈G . This subspace is clearly
included in the subspace generated by (11𝒜)𝒜∈𝐺♯ . These two spaces can be shown to be equal. We end this discussion
here, as we do not need this fact.

Link with abelian field theory

The case𝐺0 = {1} in the identity of Lemma 23 is classical in Dedekind zeta function theory for the fieldQ(𝜁𝑞), where
𝜁𝑞 = exp(2𝑖𝜋/𝑞), and can be found in Proposition 13 of [13] in a rephrased form. For the general case, we follow
Chapter 8 of [11] by Narkiewicz. The Dedekind zeta-function associated with an abelian field 𝐾 is given by

𝜁𝐾(𝑠) =
∏︁

𝜒∈𝑋(𝐾)

𝐿(𝑠, 𝜒) (1.21)

as per Theorem 8.6 of [11]. The group 𝑋(𝐾) is the group of characters attached to 𝐾, see Proposition 8.4 of [11].
This equality (1.21) is proved prime per prime, and we can restrict to ideals whose norm is prime to some integer. In
particular, we can restrict it to the primes that are prime to 𝑞, which excludes at least the ramified primes. Let𝐻𝑞(𝐾) be
the subgroup of the integers 𝑟 mod 𝑞 that are such that the automorphism ofQ(𝜁𝑞) defined by 𝜁𝑞 ↦→ 𝜁𝑟𝑞 is the identity
on 𝐾. The sets 𝑋(𝐾) and 𝐻𝑞(𝐾)⊥ are almost equal: 𝑋(𝐾) is made only of primitive characters associated to the
characters in𝐻𝑞(𝐾)⊥. We may select𝐺0 = 𝐻𝑞(𝐾) in Lemma 23<23>. Some work involving the decomposition law
in abelian number fields, which may for instance be found in Theorem 8.2 [11], gives us, when the prime factors of 𝑞
are all at most 𝑃 , that ∏︁

𝜒∈𝑋(𝐾)

𝐿𝑃 (𝑠, 𝜒) =
∏︁

𝐻𝑞(𝐾)⊂𝐾⊂𝐺𝑞

∏︁
𝑝≥𝑃,

⟨𝑝⟩𝐻𝑞(𝐾)=𝐾

(︁
1− 𝑝−|𝐾/𝐻𝑞(𝐾)|𝑠

)︁−|𝐺𝑞/𝐾|
.

The proof we provide of Lemma 23 is much simpler, but the above analysis establishes that the identities stemming
from both approaches are the same.

1.2.5 5. Timing and implementation notes
Let 𝑠 > 1 be a real number and 𝑃 ≥ 2 be a parameter. We consider the vector, for any positive integer 𝑡:

Γ𝑃,𝑠(𝑡) =
(︁
log

∏︁
𝜒∈𝐺⊥

0

𝐿𝑃 (𝑡𝑠, 𝜒)
)︁
𝐺0∈G

. (1.22)

18 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

The rows of Γ𝑃,𝑠(𝑡) are indexed by the cyclic subgroups of 𝐺. An approximate value of this vector is provided by the
function ComponentStructure.get_gamma from the values of the Hurwitz zeta function. We next define

𝑉𝑠(𝑡) =
(︀
𝜁𝑃 (𝑡𝑠; 𝑞,𝒜)

)︀
𝒜∈𝐺♯ . (1.23)

The class LatticeInvariant gives the two lists: the one of the cyclic subgroups and the one of their generators,
ordered similarly and in increasing size of the subgroups.

The algorithm (function get_vs):

Input

Input the four parameters q, s, nbdecimals and big_p as well as the two parameters that control the output verbose
and with_laTeX.

Precomputation-1

Compute and store the algebraic quantities that we need: the tuple of cyclic subgroups of 𝐺 = (Z/𝑞Z)×, the tuple of
its lattice-invariant classes, the exponent of 𝐺, its character group, an enumeration of the elements of 𝐺 and, for each
cyclic subgroup of 𝐺, the set of characters of 𝐺 that are trivial on it. This is done by the class ComponentStructure.

Initialization

Find M so that the right-hand side of (1.6) is less than 10−nbdecimals−10.

Precomputation-2

Build the set M of integers 𝑚 such that 𝑚 ≤𝑀 and all the prime factors of 𝑚 divide 𝑞. Then compute the constants
(𝐶A (𝐾,𝑚, 1−𝑋)) for every possible class A and every 𝑚 in M .

Main Loop

For 𝑚 ∈ M , add the contribution of this index to the sum approximating 𝑉𝑠(1) from the right-hand side of (1.5) with
:𝑃 = big_p.

Post-computation

Complete the products with the values for primes 𝑝 < big_p.

Output

Return the tuple of lattice-invariant classes and the tuple of couples of lower/upper bounds for the wanted Euler products.

Once the script is loaded, a typical call will be

get_vs(12, 2, 100, 110)

to compute modulo 12 the possible constants with 𝑠 = 2, asking for 100 decimal digits and using 𝑃 = 110. The output
is self explanatory. The number of decimal digits asked for is roughly handled and one may lose precision in between,
but this is indicated at the end. Note that we expect the final result to be of size roughly unity, so what we ask for is not
the relative precision but the number of decimals. Hence, in the function get_gamma, we replace by an approximation
of 0 the values that we know are insignificantly small. This is a true time-saver.

There are two subsequent optional parameters verbose and with_laTeX. The first one may take the values 0, 1 and
2; when equal to 0, the function will simply do its job and return the tuple of the invariant classes and the one of the
computed lower and upper values. When equal to 1, the time taken will also be printed. And when equal to 2, its default
value, some information on the computation is given. When the parameter verbose is at least 2 and with_laTeX is
1, the values of the constants will be further presented in a format suitable for inclusion in a LaTeX-file. The digits
presented in LaTeX-format when with_laTeX = 1 are always accurate. For instance, the call get_vs(12, 2, 100,

1.2. Fast multi-precision computation of some Euler products 19

sage-euler-product, Release 0.0.3

100, 2, 1) is the one used to prepare the addendum [2] in which we give the first hundred decimal digits of every
Euler product over a lattice invariant class when the modulus is at most 16.

The computations of the Euler products of Theorem 2 (with 𝑃 = 2, the parameter big_p being used to decide from
which point onwards we use the usual Euler product or the expression of the theorem) is implemented in:

The parameter big_p may be increased by the script to ensure that 𝑃 ≥ 2𝛽 (a condition that is usually satisfied). We
reused the same structure as the one for the function get_vs except that the set of indices 𝑚 is now a full interval.
Since the coefficients |𝑏𝐹 (𝑗)− 𝑏𝐺(𝑗)| may increase like 𝛽𝑗 , we increase the working precision by 𝐽 log 𝛽/ log 2.

Checking

The values given here have been checked in several ways. The co-authors of this paper have run several independent
scripts. We also provide the function get_vs_checker(q, s, borne = 10000) which computes approximate val-
ues of the same Euler products by simply truncating the Euler product representation. We checked with positive result
the stability of our results with respect of the variation of the parameter 𝑃 . This proved to be a very discriminating test.

Furthermore, approximate values for Shanks’ and Lal’s constants are known (Finch in [4] gives 10 digits) and we agree
with those. Finally, the web site [7] by X. Gourdon and P. Sebah, or the attached postscript file on the same page, gives
in section 4.4 the first fifty digits of the constant they call 𝐴 and which are

𝜋2

2

∏︁
𝑝≡1[4]

(︂
1− 4

𝑝

)︂(︂
𝑝+ 1

𝑝− 1

)︂2

= 1.95049 11124 46287 07444 65855 65809 55369

25267 08497 71894 30550 80726 33188 94627

61381 60369 39924 26646 98594 38665 · · ·
(1.24)

Our result matches that of [7].

Some observations on the running time and complexity

We tried several large computations to get an idea of the limitations of our script with the choice 𝑠 = 2 in Corollary 8.
We present five tables:

• A first table for 3 ≤ 𝑞 ≤ 100 with the uniform choice 𝑃 = 100 and asking for 100 decimal digits.

• Three further tables obtained with the choice 𝑃 = 200 and asking for a thousand decimal digits. The cases
retained are 𝑞 ≤ 16, 91 ≤ 𝑞 ≤ 100 and 200 ≤ 𝑞 ≤ 220. This last interval contains the first integer 𝑞 such that
𝑟 = 𝜔(𝜙(𝑞)) = 4, namely 𝑞 = 211.

• And finally a table for 𝑞 ∈ {3, 5} and asking for 5000 decimal digits. The running time is given with different
choices of the parameter 𝑃 .

Since we did not run each computation hundred times to get an average timing, these tables have to be taken with a
pinch of salt. The processor was an Intel Core i5-2500 at 3.30 GHz. The first half of Table 2 may be reproduced with
the call:

table_performance(3, 51, 100, 100)

In these tables, 𝑟 = 𝜔(𝜙(𝑞)) is the number of distinct prime divisors of 𝜙(𝑞) as in Corollary 8. The time is given in
tenth of a second, indicated by “s/10”. The column with the tag “#𝑚′𝑠” contains the number of indices 𝑚 ≤𝑀 such
that 𝑚|𝜙(𝑞)∞. We otherwise follow the notation of Theorem 2.

It seems likely, when looking at Tables 2, 3, 4 and 5 that the number of values of the Hurwitz zeta-function to be
computed is the main determining factor of the time consumption. This number is controlled by 𝜙(𝑞), since this is the
number of characters, and by the number of 𝑚’s required, a value that is on the whole controlled by 𝑟 = 𝜔(𝜙(𝑞)).

20 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

Table 1: Time used when asking for 1000 digits for 𝑞 ≤ 16

𝑞 𝜙(𝑞) 𝑟 #𝑚′𝑠 ‖𝐺♯‖ 𝑀 Time (s/10)
3 2 1 8 2 218 10
4 2 1 8 2 218 7
5 4 1 8 3 218 14
7 6 2 26 4 218 69
8 4 1 8 4 218 12
9 6 2 26 4 218 67
11 10 2 19 4 218 81
12 4 1 8 4 218 14
13 12 2 26 6 218 135
15 8 1 8 6 218 26
16 8 1 8 6 218 24

Table 2: Time used when asking for 1000 digits for 90 < 𝑞 ≤ 100

𝑞 𝜙(𝑞) 𝑟 #𝑚′𝑠 |𝐺♯| 𝑀 Time (s/10)
91 72 2 26 30 219 910
92 44 2 14 8 218 286
93 60 3 47 16 219 1388
95 72 2 26 18 218 912
96 32 1 8 16 218 114
97 96 2 26 12 218 1257
99 60 3 47 16 219 1399
100 40 2 19 12 218 363

Table 3: Time used when asking for 1000 digits for 200 ≤ 𝑞 ≤ 220

𝑞 𝜙(𝑞) 𝑟 #𝑚′𝑠 ‖𝐺♯‖ 𝑀 Time (s/10)
200 80 2 19 24 218 759
201 132 3 37 16 218 2543
203 168 3 42 24 219 3767
204 64 1 8 20 218 240
205 160 2 19 28 219 1573
207 132 3 37 16 218 2520
208 96 2 26 40 219 1259
209 180 3 47 24 219 4552
211 210 4 69 16 219 8406
212 104 2 14 12 218 743
213 140 3 31 16 218 2271
215 168 3 42 24 219 3807
216 72 2 26 24 219 930
217 180 3 47 40 219 4517
219 144 2 26 24 219 1970
220 80 2 19 24 218 753

Table 6 gives some data about the running time when asking for 5000 decimal digits, which essentially sets the horizon
of the present method. The time is counted in minutes.

1.2. Fast multi-precision computation of some Euler products 21

sage-euler-product, Release 0.0.3

Table 4: Time used when asking for 5000 digits

𝑞 𝑃 time
3 200 80m
3 400 35m
3 500 35m
5 500 72m
5 1000 70m
5 5000 72m

[1] H. Cohen, High precision computations of Hardy-Littlewood constants, preprint (1996), 1–19.

[2] S. Ettahri, O. Ramaré and L. Surel, Some Euler Products, Preprint (2020), 4p, Addendum to ’Fast multi-precision
computation of some Euler products’.

[3] J.-H. Evertse, On sums of 𝑆 -units and linear recurrences, Compositio Math. 53 (1984), no. 2, 225–244. MR
766298

[4] S. R. Finch, Mathematical constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge Uni-
versity Press, Cambridge, 2003. MR 2003519

[5] P. Flajolet and I. Vardi, Zeta function expansions of classical constants, preprint (1996), 1–10.

[6] É. Fouvry, C. Levesque and M. Waldschmidt, Representation of integers by cyclotomic binary forms, Acta Arith.
184 (2018), no. 1, 67–86. MR 3826641

[7] X. Gourdon and P. Sebah, Constants from number theory, http://numbers.computation.free.fr/Constants/constants.
html (2010).

[8] M. Lal, Primes of the form 𝑛4 + 1, Math. Comp. 21 (1967), 245–247. MR 0222007

[9] P. Moree, Approximation of singular series constant and automata. with an appendix by Gerhard Niklasch.,
Manuscripta Matematica 101 (2000), no. 3, 385–399.

[10] P. Moree, On the average number of elements in a finite field with order or index in a prescribed residue class,
Finite Fields Appl. 10 (2004), no. 3, 438–463. MR 2067608

[11] W. Narkiewicz, Elementary and analytic theory of algebraic numbers, third ed., Springer Monographs in Mathe-
matics, Springer-Verlag, Berlin, 2004. MR 2078267 (2005c:11131)

[12] OEIS Foundation Inc., The on-line encyclopedia of integer sequence, 2019, http://OEIS.org/.

[13] J.-P. Serre, Cours d’arithmétique, Collection SUP: “Le Mathématicien”, vol. 2, Presses Universitaires de France,
Paris, 1970. MR 0255476

[14] D. Shanks, On the conjecture of Hardy & Littlewood concerning the number of primes of the form 𝑛2 + 𝑎, Math.
Comp. 14 (1960), 320–332. MR 0120203

[15] D. Shanks, On numbers of the form :math:`n^{4}+1`, Math. Comput. 15 (1961), 186–189. MR 0120184

[16] D. Shanks, The second-order term in the asymptotic expansion of 𝐵(𝑥), Math. Comp. 18 (1964), 75–86. MR
0159174

[17] D. Shanks, Lal’s constant and generalizations, Math. Comp. 21 (1967), 705–707. MR 0223315

[18] L. Tóth, Menon’s identity and arithmetical sums representing functions of several variables, Rend. Semin. Mat.
Univ. Politec. Torino 69 (2011), no. 1, 97–110. MR 2884710

[19] L. Tóth, On the number of cyclic subgroups of a finite Abelian group, Bull. Math. Soc. Sci. Math. Roumanie
(N.S.) 55(103) (2012), no. 4, 423–428. MR 2963406

22 Chapter 1. Documentation

http://numbers.computation.free.fr/Constants/constants.html
http://numbers.computation.free.fr/Constants/constants.html
http://OEIS.org/

sage-euler-product, Release 0.0.3

[20] A. J. van der Poorten and H. P. Schlickewei, Zeros of recurrence sequences, Bull. Austral. Math. Soc. 44 (1991),
no. 2, 215–223. MR 1126359

[21] E. Witt, Treue Darstellung Liescher Ringe, J. Reine Angew. Math. 177 (1937), 152–160. MR 1581553

1.3 Installation EULER_PRODUCT

1.3.1 Euler Product for SageMath
Computing Lattice Invariant Euler Products

The sage-euler-product package for SageMath adds functionality related to Number Theory. It is based on SageMath
https://www.sagemath.org_ and relies heavily on:

• gmp or mpir for arbitrary precision arithmetic

• PARI/GP for number field computations

Prerequisites

Installing sage-euler-product requires a working Sage installation.

Installation from PyPI in an existing Sage installation built from source

The module is distributed on PyPI and is easily installed through the Python package manager pip. Switch to the source
directory (SAGE_ROOT) of your Sage installation, and run the following command:

$ sage -pip install sage-euler-product [--user]

The --user option is optional and allows to install the module in your user space (and does not require administrator
rights).

If you use Debian or Ubuntu and you installed Sage through the operating system’s package manager (that is, the
package sagemath), run these two commands:

$ source /usr/share/sagemath/bin/sage-env
$ pip install sage-euler-product --user

If you use Arch Linux, you need to install from source (see next section).

Installation of the development version from GitHub in an existing Sage installation

This section provides detailed instructions on how to download, modify and install the development version of sage-
euler-product. In all commands,

PIP has to be replaced by either pip, pip2, or sage -pip PYTHON has to be replaced by either python, python2 or sage
-python If you are an Arch Linux user with the sagemath package installed, use PIP=pip2 and PYTHON=python2. If
you downloaded SageMath as a tarball or installed it from source use PIP=’sage -pip’ and PYTHON=’sage -python’.

You can install the latest development version in one line with:

$ PIP install git+https://github.com/archimede-institut/sage-euler-product [--user]

As before, the –user option is optional and when specified will install the module in your user space.

You can also perform a two stage installation that will allow you to modify the source code. The first step is to clone
the repository:

1.3. Installation EULER_PRODUCT 23

https://github.com/archimede-institut/sage-euler-product/actions/workflows/tests.yml
https://github.com/archimede-institut/sage-euler-product/actions/workflows/manual.yml
https://github.com/archimede-institut/sage-euler-product/actions/workflows/lint.yml
https://github.com/archimede-institut/sage-euler-product/actions/workflows/pages/pages-build-deployment.yml
https://www.sagemath.org

sage-euler-product, Release 0.0.3

$ git clone https://github.com/archimede-institut/sage-euler-product

The above command creates a repository sage-euler-product with the source code, documentation and miscellaneous
files. You can then change to the directory thus created and install the surface dynamics module with:

$ cd sage-euler-product
$ PIP install . [--user]

Do not forget the . that refers to the current directory.

When you don’t want to install the package or you are testing some modifications to the source code, a more convenient
way of using sage-euler-prodct is to do everything locally. Once done, you can import the sage-euler-product module.
To check that you are actually using the right module (i.e. the local one) you can do in a SageMath session:

sage: import euler_product
sage: euler_product.__path__ # random
['/home/you/sage-euler-product/euler_product/']

The result of the command must correspond to the path of the repository created by the command git clone given above.

If you wish to install your custom version of sage-euler-product just use PIP as indicated before.

Installation in a virtual Python environment (no prior Sage installation required)

Create and activate a virtual environment:

python3 -m venv venv-euler-product
. venv-euler-product/bin/activate

Install the package in the virtual environment:

pip install "sage-euler-product[passagemath] @ git+https://github.com/archimede-institut/
→˓sage-euler-product

This automatically installs the modularized parts of the Sage library that are needed by the package. (These modularized
distributions are provided by https://github.com/passagemath.)

Next, start Sage:

rehash
sage

At the Sage prompt, load a modularized top-level environment:

sage: from sage.all__sagemath_schemes import *

Documentation

complete module documentation: https://archimede-institut.github.io/sage-euler-product/

Check

After installing sage-euler-product, check that it works by launching Sage and typing the following commands. You
should get the same output as below.

24 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

sage: from euler_product.all import *
sage: from euler_product.lattice_invariant_euler_produ import get_euler_products
sage: get_euler_products(3, 1, 1-x^2,1, 100)
Computing the structural invariants ... done.
We have Delta = 2 and beta = 2
We use big_m = 310 , big_p = 300 and working prec = 653 .
Computing the finite products for p < 300 ... done.
Computing C_A(K, m, F/H) ... -------------------
For p+3ZZ in frozenset({1})
For F(x) = -x^2 + 1
and H(x) = 1
the product of F(1/p)/H(1/p) is between 0.

→˓9671040753637981066150556834173635260473412207450092130719978569438733967843271277395717230016746853806050215621235810749643636399725665325875376146914709362753787689855429317947529895445140974344
and

0.
→˓9671040753637981066150556834173635260473412207450092130719978569438733967843271277395717230016746853806050215621235810749643636399725665325875376146914709362753787689855429317947529895445140974475

(Obtained: 193 correct decimal digits)

For p+3ZZ in frozenset({2})
For F(x) = -x^2 + 1
and H(x) = 1
the product of F(1/p)/H(1/p) is between 0.

→˓7071813747951674302088659938984504109243584468119496848353517677901518159831128643782536704398941052120208041311403202957250160794697319584608281454011743387515885835706146696365506658500107821107
and

0.
→˓7071813747951674302088659938984504109243584468119496848353517677901518159831128643782536704398941052120208041311403202957250160794697319584608281454011743387515885835706146696365506658500107821228

(Obtained: 193 correct decimal digits)
Time taken: 1.920718120993115 seconds.
((frozenset({1}), frozenset({2})),

((0.
→˓9671040753637981066150556834173635260473412207450092130719978569438733967843271277395717230016746853806050215621235810749643636399725665325875376146914709362753787689855429317947529895445140974344,
→˓

0.
→˓9671040753637981066150556834173635260473412207450092130719978569438733967843271277395717230016746853806050215621235810749643636399725665325875376146914709362753787689855429317947529895445140974475),
→˓

(0.
→˓7071813747951674302088659938984504109243584468119496848353517677901518159831128643782536704398941052120208041311403202957250160794697319584608281454011743387515885835706146696365506658500107821107,
→˓

0.
→˓7071813747951674302088659938984504109243584468119496848353517677901518159831128643782536704398941052120208041311403202957250160794697319584608281454011743387515885835706146696365506658500107821228)))

https://github.com/archimede-institut/sage-euler-product Assuming you have the program git on your computer, you
can install the development version with the command:

$ sage -pip install git+https://github.com/archimede-institut/sage-euler-product [--user]

Authors

Olivier Ramarè: see https://ramare-olivier.github.io/Maths/mcom3630.pdf for complete Mathematical references

Dominique Benielli: maintainerDeveloppement Cell, Institut Archimède Aix-Marseille Université

1.3. Installation EULER_PRODUCT 25

sage-euler-product, Release 0.0.3

How to cite this project

If you have used this project for please cite us as described on our zenodo site.

Versions

The first release of sage-euler-product will appear soon as a sagemath spkg.

.

1.4 API Documentation

1.4.1 euler_product.lattice_invariant_euler_products
The main function of this package is get_euler_products which computes with interval arithmetic and a proven
precision Euler products of rational functions over primes in special sets modulo some fixed q. These special sets
are the lattice invariant classes modulo q, and the software also enables the user to use them through the class
ComponentStructure.

AUTHORS:

• Olivier Ramaré: initial version

• Dominique Benielli Aix Marseille Université , Integration as SageMath package. Cellule de developpement
Institut Archimède

. . .WARNING:

Needs Sage version at least 9.0 CAREFUL, this is Python 3 code!

EXAMPLES:

sage: from euler_product.lattice_invariant_euler_products import get_euler_products

euler_product.lattice_invariant_euler_products.get_euler_products(q, s, f_init, h_init,
nb_decimals=100,
big_p=300, verbose=2,
with_laTeX=0,
digits_offset=10)

Returns the pair ((A), (approx_prod_(p in A mod q) f_init(1/p^s) / h_init(1/p^s))) where (A) is the tuple of the
lattice-invariant classes modulo q and approx_prod_(p in A mod q) f_init(1/p^s) / h_init(1/ps)) is an arithmetic
interval approximation of the product over every prime in the class A modulo q of the quotient f_init(1/p^s) /
h_init(1/p^s) given in the form of a pair (lower_bound, upper_bound). We expect the difference upper_bound
- lower bound to be < 10^(-nb_decimals) but this is not guaranteed. In case it does not happen, increase
nb_decimals slightly. We ask at the beginning for digits_offset more (binary) digits. We compute directly
what happens for primes < big_p. We assume that f_init(0) = h_init(0) = 1, that s is a positive real number and
that ∆𝑠 > 1 where ∆ is the order of the zero of f_init-h_init at 0. This last condition is to ensure the Euler
products converge absolutely. See Theorem 2 of the reference file.

to do

assert F[0] = H[0] = 1

INPUT:

• q – int
a positive integer. The products are taken over classes modulo q.

• s – int, rat or real number
A real number > 0. It should be given with enough precision to enable the computations, so either an

26 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

exact type or a RealIntervalField(...) number, given with enough precision. As this precision
is given in binary digits, using 10*nb_decimals is a safe choice. Notice that, if you want to have s =
2.1, better use 21/10. Additional conditions may be required for the Euler products to be absolutely
convergent.

• f_init – pol
a polynomial with real coefficients and such that f_init(0) = 1.

• h_init – pol
a polynomial with real coefficients and such that h_init(0) = 1.

• nb_decimals – int (default: 100), optional
The number of decimals that are being sought by the final result. The function aims at such a number
of decimals but a final tuning may be required.

• big_p – int (default:300), optional
This is an internal parameter that is described in the accompanying paper. In short: the Euler products
up to big_p are computed directly.

• verbose – int (default: 2), optional
Defines the amount of output shown. It may take the usual values 0, 1, 2, towards more explanations.
When get_vs is used inside another function, verbose == 0 is usually what is required. The value
-1 is special and the effect is fully described in the tutorial.

• with_laTeX – int (default: 0), optional
This parameter takes the value either 1 or not 1. As of now, this has effect only when verbose == 2.

• digits_offset – int (default: 10), optional
Not used yet.

OUTPUT:

pair of tuples
The output is a pair whose first component is the tuple of lattice invariant classes (A) and second component
is the corresponding tuple of values (prod_(p in A mod q) f_init(1/p^s) / h_init(1/p^s)) where each value
is given in interval arithmetic as a pair (lower_bound, upper_bound).

EXCEPTIONS:
ValueError (‘non convergent product’) ValueError(“f_init[0] and h_init[0] must be equal to 1”)

EXAMPLES:

sage: from euler_product.lattice_invariant_euler_products import get_euler_products
sage: get_euler_products(7, 21/10, 1-x^3, 1+2*x^2, 100, 100, 0) # doctest:␣
→˓+NORMALIZE_WHITESPACE
((frozenset({1}), frozenset({6}), frozenset({2, 4}), frozenset({3, 5})),
((0.
→˓9999982391236771174582758043183901338942364901235699217522601062931335918060239723453736409102740196458132617578911976337827035056548487,
→˓

0.
→˓9999982391236771174582758043183901338942364901235699217522601062931335918060239723453736409102740196458132617578911976337827035058702859),
→˓

(0.
→˓9999576136884417398077559625848130088885656351740787265112227071217155682725032721589661739481265973172546756861113391191295834691038278,
→˓

0.
→˓9999576136884417398077559625848130088885656351740787265112227071217155682725032721589661739481265973172546756861113391191295834695309445),
→˓

(0.
(continues on next page)

1.4. API Documentation 27

sage-euler-product, Release 0.0.3

(continued from previous page)

→˓8903351065070010591619870364916093462000320541037928008286414361647911118617149004528444428927243238343453800105285278416937429697527759,
→˓

0.
→˓8903351065070010591619870364916093462000320541037928008286414361647911118617149004528444428927243238343453800105285278416937429701294787),
→˓

(0.
→˓9772686478893137854388184266844545895906115657758499208289733302484239589826603294718981918722254050003289550536985865206208817481509527,
→˓

0.
→˓9772686478893137854388184266844545895906115657758499208289733302484239589826603294718981918722254050003289550536985865206208817489644518)))

sage: from euler_product.lattice_invariant_euler_products import get_euler_products
sage: ss = RealIntervalField(1000)(2.1)
sage: get_euler_products(7, ss, 1-x^3, 1+2*x^2, 100, 100, 0) # doctest: +NORMALIZE_
→˓WHITESPACE
((frozenset({1}), frozenset({6}), frozenset({2, 4}), frozenset({3, 5})),
((0.
→˓9999982391236771174593563029845165888949925030802468731879907340376417409448258804977425145432276967368069400485351556253529538963227206,
→˓

0.
→˓9999982391236771174593563029845165888949925030802468731879907340376417409448258804977425145432276967368069400485351556253529538964531787),
→˓

(0.
→˓9999576136884417398271690198938580248373051070700165881172968559533702467774954223949082638318313973207279942499461484456197967852358670,
→˓

0.
→˓9999576136884417398271690198938580248373051070700165881172968559533702467774954223949082638318313973207279942499461484456197967854939739),
→˓

(0.
→˓8903351065070010720688279359417577943450315878955017449322206666706753000624035653585286591685046103123298899332142094572919914905004413,
→˓

0.
→˓8903351065070010720688279359417577943450315878955017449322206666706753000624035653585286591685046103123298899332142094572919914907258341),
→˓

(0.
→˓9772686478893137901030489977249098644207078284256772977807607160813875957724686047692999490530968236161711793835695795600577094636101003,
→˓

0.
→˓9772686478893137901030489977249098644207078284256772977807607160813875957724686047692999490530968236161711793835695795600577094640930035)))

euler_product.lattice_invariant_euler_products.get_vs(q, s, nb_decimals=100, big_p=100,
verbose=2, with_laTeX=0, digits_offset=10)

Returns the pair ((A), (approx_zeta(s; q, A))) where (A) is the tuple of the lattice-invariant classes modulo q and
approx_zeta(s; q, A) is an arithmetic interval approximation of 𝜁(𝑠; 𝑞, 𝐴) =

∏︀
𝑝∈𝐴(1−𝑝−𝑠)−1 given in the form

of a pair (lower_bound, upper_bound).

We expect the difference upper_bound - lower bound to be < 10^(-nb_decimals) but this is not guaranteed. In
case it does not happen, increase nb_decimals slightly. We compute directly what happens for primes < big_p.
We ask at the beginning for digits_offset more (binary) digits.

INPUT:

• q – int
The products are taken over classes modulo q.

28 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

• s – int, rat or real number
A real number > 1. It should be given with enough precision to enable the computations, so either an
exact type or a RealIntervalField(...) number, given with enough precision. As this precision
is given in binary digits, using 10*nb_decimals is a safe choice. Notice that, if you want to have s
= 2.1, better use 21/10.

• nb_decimals – int (default: 100)
The number of decimals that are being sought by the final result. The function aims at such a number
of decimals but a final tuning may be required.

• big_p – int (default: 100), optional
This is an internal parameter that is described in the accompanying paper. In short: the Euler products
up to big_p are computed directly.

• verbose – int (default: 2), optional
Defines the amount of output shown. It may take the usual values 0, 1, 2, towards more explanations.
When get_vs is used inside another function, verbose = 0 is usually what is required. The value
-1 is special and the effect is fully described in the tutorial.

• with_laTeX – int (default: 0), optional
This parameter takes the value 1 or not 1. As of now, this has effect only when verbose == 2.

• digits_offset – int (default: 10), optional
We ask for some more digits, see above.

OUTPUT:

pair of tuples
The output is a pair whose first component is the tuple of lattice invariant classes (A) and second component
is the corresponding tuple of values (𝜁(𝑠; 𝑞, 𝐴)) where each value is given in interval arithmetic as a pair
(lower_bound, upper_bound).

EXAMPLES:

sage: from euler_product.lattice_invariant_euler_products import get_vs
sage: get_vs(8, 3, 100) # doctest: +NORMALIZE_WHITESPACE
Computing the structural invariants ... done.
Computing big m ... Computing the finite product for p < 100 ... done.
done: we use big_m = 18 .
Building indices ... done: there are 5 summands.

For p + 8ZZ in frozenset({1})
the product of 1 / (1 - p^{-3}) is between
1.
→˓00022487189858708836232213399171649391737471516970709876892216031894460446108615250640526399629122151838389
and
1.
→˓00022487189858708836232213399171649391737471516970709876892216031894460446108615250640526399629122151838407
(Obtained: 104 correct decimal digits)

For p + 8ZZ in frozenset({3})
the product of 1 / (1 - p^{-3}) is between
1.
→˓03941995442465269726466028414808844655561938824520417669418677265825033928903395095004198994772110633052081
and
1.
→˓03941995442465269726466028414808844655561938824520417669418677265825033928903395095004198994772110633052096

(continues on next page)

1.4. API Documentation 29

sage-euler-product, Release 0.0.3

(continued from previous page)

(Obtained: 105 correct decimal digits)

For p + 8ZZ in frozenset({5})
the product of 1 / (1 - p^{-3}) is between
1.
→˓00859929667035262471282393658930645974303187198527123038915644169227273758988775728257540659401768223811113
and
1.
→˓00859929667035262471282393658930645974303187198527123038915644169227273758988775728257540659401768223811127
(Obtained: 105 correct decimal digits)

For p + 8ZZ in frozenset({7})
the product of 1 / (1 - p^{-3}) is between
1.
→˓00305724526111078841419961903241251128776224554544642576504934327705380373558762279204676597516287864231117
and
1.
→˓00305724526111078841419961903241251128776224554544642576504934327705380373558762279204676597516287864231131
(Obtained: 105 correct decimal digits)
((frozenset({1}), frozenset({3}), frozenset({5}), frozenset({7})),
((1.
→˓00022487189858708836232213399171649391737471516970709876892216031894460446108615250640526399629122151838389,
→˓

1.
→˓00022487189858708836232213399171649391737471516970709876892216031894460446108615250640526399629122151838407),
→˓

(1.
→˓03941995442465269726466028414808844655561938824520417669418677265825033928903395095004198994772110633052081,
→˓

1.
→˓03941995442465269726466028414808844655561938824520417669418677265825033928903395095004198994772110633052096),
→˓

(1.
→˓00859929667035262471282393658930645974303187198527123038915644169227273758988775728257540659401768223811113,
→˓

1.
→˓00859929667035262471282393658930645974303187198527123038915644169227273758988775728257540659401768223811127),
→˓

(1.
→˓00305724526111078841419961903241251128776224554544642576504934327705380373558762279204676597516287864231117,
→˓

1.
→˓00305724526111078841419961903241251128776224554544642576504934327705380373558762279204676597516287864231131)))

sage: from euler_product.lattice_invariant_euler_products import get_vs
sage: ss = RealIntervalField(1000)(2.1)
sage: get_vs(7, ss, 100) # doctest: +NORMALIZE_WHITESPACE
Computing the structural invariants ... done.
Computing big m ... Computing the finite product for p < 100 ... done.
done: we use big_m = 25 .
Building indices ... done: there are 11 summands.

(continues on next page)

30 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

(continued from previous page)

For p + 7ZZ in frozenset({1})
the product of 1 / (1 - p^{-2.
→˓100000000000000088817841970012523233890533447265625000?
→˓}) is between
1.
→˓0015251649887938725660913688010517101666208733880109315688816926296884362067543474803469725091159142720127867
and
1.
→˓0015251649887938725660913688010517101666208733880109315688816926296884362067543474803469725091159142721524294
(Obtained: 102 correct decimal digits)

For p + 7ZZ in frozenset({6})
the product of 1 / (1 - p^{-2.
→˓100000000000000088817841970012523233890533447265625000?
→˓}) is between
1.
→˓0053143647905533679330453141809294714882943247539536696871604072988921328496577468083535690636615857899394878
and
1.
→˓0053143647905533679330453141809294714882943247539536696871604072988921328496577468083535690636615857900796593
(Obtained: 100 correct decimal digits)

For p + 7ZZ in frozenset({2, 4})
the product of 1 / (1 - p^{-2.
→˓100000000000000088817841970012523233890533447265625000?
→˓}) is between
1.
→˓3163847262351936805824813658507662946352860144404616097232556176854606556798278964523547342562974874324307818
and
1.
→˓3163847262351936805824813658507662946352860144404616097232556176854606556798278964523547342562974874326143261
(Obtained: 102 correct decimal digits)

For p + 7ZZ in frozenset({3, 5})
the product of 1 / (1 - p^{-2.
→˓100000000000000088817841970012523233890533447265625000?
→˓}) is between
1.
→˓1573918393315763316569087551275677116540398269978595705035335829359240632731578772727923341501394332932502825
and
1.
→˓1573918393315763316569087551275677116540398269978595705035335829359240632731578772727923341501394332934116590
(Obtained: 102 correct decimal digits)
((frozenset({1}), frozenset({6}), frozenset({2, 4}), frozenset({3, 5})),
((1.
→˓0015251649887938725660913688010517101666208733880109315688816926296884362067543474803469725091159142720127867,
→˓

1.
→˓0015251649887938725660913688010517101666208733880109315688816926296884362067543474803469725091159142721524294),
→˓

(1.
→˓0053143647905533679330453141809294714882943247539536696871604072988921328496577468083535690636615857899394878,

(continues on next page)

1.4. API Documentation 31

sage-euler-product, Release 0.0.3

(continued from previous page)

→˓

1.
→˓0053143647905533679330453141809294714882943247539536696871604072988921328496577468083535690636615857900796593),
→˓

(1.
→˓3163847262351936805824813658507662946352860144404616097232556176854606556798278964523547342562974874324307818,
→˓

1.
→˓3163847262351936805824813658507662946352860144404616097232556176854606556798278964523547342562974874326143261),
→˓

(1.
→˓1573918393315763316569087551275677116540398269978595705035335829359240632731578772727923341501394332932502825,
→˓

1.
→˓1573918393315763316569087551275677116540398269978595705035335829359240632731578772727923341501394332934116590)))

TESTS:

sage: from euler_product.lattice_invariant_euler_products import get_vs
sage: get_vs(3, 2, 100) # doctest: +NORMALIZE_WHITESPACE
Computing the structural invariants ... done.
Computing big m ... Computing the finite product for p < 100 ... done.
done: we use big_m = 26 .
Building indices ... done: there are 5 summands.

For p + 3ZZ in frozenset({1})
the product of 1 / (1 - p^{-2}) is between
1.
→˓0340148754143418805390306444130476285789654284890998864168250384212222458710963580496217079826205962897974283
and
1.
→˓0340148754143418805390306444130476285789654284890998864168250384212222458710963580496217079826205962901601292
(Obtained: 100 correct decimal digits)

For p + 3ZZ in frozenset({2})
the product of 1 / (1 - p^{-2}) is between
1.
→˓4140643908921476375655018190798293799076950693931621750399249624239281069920884994537548585024751141999583734
and
1.
→˓4140643908921476375655018190798293799076950693931621750399249624239281069920884994537548585024751142004543841
(Obtained: 99 correct decimal digits)
((frozenset({1}), frozenset({2})),
((1.
→˓0340148754143418805390306444130476285789654284890998864168250384212222458710963580496217079826205962897974283,
→˓

1.
→˓0340148754143418805390306444130476285789654284890998864168250384212222458710963580496217079826205962901601292),
→˓

(1.
→˓4140643908921476375655018190798293799076950693931621750399249624239281069920884994537548585024751141999583734,
→˓

(continues on next page)

32 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

(continued from previous page)

1.
→˓4140643908921476375655018190798293799076950693931621750399249624239281069920884994537548585024751142004543841)))

euler_product.lattice_invariant_euler_products.get_vs_checker(q, s, borne=10000)
This is a low level sanity check engine described in the tutorial. It is to be used by developers only.

INPUT:

• q – int
The products are taken over lattice invariant classes modulo q.

• s – real
A real number > 1.

• borne – int (default: 10000), optional
boundary of computation.

EXAMPLES:

sage: from euler_product.lattice_invariant_euler_products import get_vs_checker
sage: get_vs_checker(8, 2)

For p mod 8 in frozenset({1})
the product of 1/(1-p^{- 2 }) is about 1.0048326237351608

For p mod 8 in frozenset({3})
the product of 1/(1-p^{- 2 }) is about 1.1394159722583108

For p mod 8 in frozenset({5})
the product of 1/(1-p^{- 2 }) is about 1.0510974216618003

For p mod 8 in frozenset({7})
the product of 1/(1-p^{- 2 }) is about 1.0251478255836493

euler_product.lattice_invariant_euler_products.table_performance(min_q, max_q,
nb_decimals=100, big_p=300)

The behaviour of this function is described in the attached tutorial.

INPUT:

• min_q – int
The modulus q goes through all the values in [min_q, max_q] that are not twice an odd integer.

• max_q – int
The modulus q goes through all the values in [min_q, max_q] that are not twice an odd integer.

• nb_decimals – int (default: 100), optional
Same as in get_vs.

• big_p – int (default: 300), optional
Same as in get_vs.

OUTPUT:

str
the table in Latex is issued.

EXAMPLES:

1.4. API Documentation 33

sage-euler-product, Release 0.0.3

sage: from euler_product.lattice_invariant_euler_products import table_performance
sage: table_performance(10, 30) # random
11 102 digits for the first product
12 102 digits for the first product
13 102 digits for the first product
15 102 digits for the first product
16 102 digits for the first product
17 102 digits for the first product
19 102 digits for the first product
20 102 digits for the first product
21 102 digits for the first product
23 102 digits for the first product
24 102 digits for the first product
25 102 digits for the first product
27 102 digits for the first product
28 102 digits for the first product
29 102 digits for the first product
11& 10& 2& 8& 4& 21& 4 \
12& 4& 1& 5& 4& 21& 1 \
13& 12& 2& 10& 6& 21& 5 \
15& 8& 1& 5& 6& 21& 2 \
16& 8& 1& 5& 6& 21& 2 \
17& 16& 1& 5& 5& 21& 4 \
19& 18& 2& 10& 6& 21& 8 \
20& 8& 1& 5& 6& 21& 2 \
21& 12& 2& 10& 8& 21& 6 \
23& 22& 2& 6& 4& 21& 6 \
24& 8& 1& 5& 8& 21& 2 \
25& 20& 2& 8& 6& 21& 8 \
27& 18& 2& 10& 6& 21& 8 \
28& 12& 2& 10& 8& 21& 6 \
29& 28& 2& 7& 6& 21& 9 \

1.4.2 euler_product.utils_euler_product
Utils_euler_product utilities for Euler Product

utils_euler_product.py defines functions Main Engines

AUTHORS:

• Olivier Ramaré: initial version

• Dominique Benielli:
Aix Marseille Université, Integration as SageMath package. Cellule de developpement Institut Archimède

Warning

Needs Sage version at least 9.0 CAREFUL, this is Python 3 code!

EXAMPLES:

sage: from euler_product.utils_euler_product import LatticeInvariantClasses

34 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

class euler_product.utils_euler_product.ComponentStructure(q)
Bases: object

This class takes a positive integer q and creates the following list of accessors:

• phi_q: the value of the Euler-phi function at q.

• the_exponent: the exponent of the multiplicative group (Z/𝑞Z)*.

• character_group: the group of Dirichlet characters modulo q, see this function for its description.

• invertibles: the tuple of the integers between 1 and q that are prime to q.

• the_SG_tuple and the_Class_tuple as in the class LatticeInvariantClass.

• nb_class: the number of Lattice Invariant classes.

• invariant_characters: given a subgroup in the_SG_tuple, the tuple of the characters that leaves
this subgroup invariant is created. invariant_characters is this list of tuples, arranged as in
the_SG_tuple.

• getr_A_Kt: a method used only for get_CA_Km and get_CA_Km_F_sur_H.
The coefficient C(A,K,m, F/H) are a sum on a variable t of s(F/H,m/t) times a function of t, say f(t). The
lattice class A in given by its index ind_A in the_Class_tuple, the subgroup K is given by its index
ind_K in the_SG_tuple. The function get_r_A_K_t answers a dictionary which to every (ind_A,
ind_K, t) associates this f(t) (with the moebius factor). The list of t is of course limited and given
as the input parameter of get_r_A_K_t. This is the list of elements that form a divisor-closed subset
of integers. This list is the same as the list of necessary values of m.

• get_CA_Km: a method used for get_vs.
The coefficient C(A,K,m) are a sum on a variable t of a function of the value computed by getr_A_K_t.
The lattice class A in given by its index ind_A in the_Class_tuple, the subgroup K is given by
its index ind_K in the_SG_tuple. The function get_CA_Km answers a dictionary which to every
(ind_A, ind_K, m) associates this value.

• get_CA_Km_F_sur_H: a method used for get_euler_products.
The coefficient C(A,K,m, F/H) are a sum on a variable t of s(F/H, m/t) times a function of the value
computed by getr_A_K_t. The lattice class A in given by its index ind_A in the_Class_tuple,
the subgroup K is given by its index ind_K in the_SG_tuple. The function get_CA_Km_F_sur_H
answers a dictionary which to every (ind_A, ind_K, m) associates this value. When F == 1 and
H == 1-X, the output of get_CA_Km_F_sur_H is the same as the one of get_CA_Km.

• get_L_values: a method used only for get_gamma.

• get_gamma: outputs the tuple defined in (22) of the corresponding paper.
For every cyclic subgroup 𝐺0 in the_SG_tuple, we compute

∑︀
𝜒∈𝐺⊥

0
log𝐿𝑃 (𝑡 * 𝑠, 𝜒), where

𝐿𝑃 (𝑥, 𝜒) is the L-series associated to 𝜒, save that we remove the Euler factors for primes below
P==big_p. The output is the list of these values computed with prec correct binary digits.

EXAMPLES:

sage: from euler_product.utils_euler_product import ComponentStructure
sage: structure = ComponentStructure(3)

get_CA_Km(my_indices)
get_CA_Km is a method used for get_vs. The coefficient C(A,K,m) are a sum on a variable t of a function of
the value computed by getr_A_K_t. The lattice class A in given by its index ind_A in the_Class_tuple,
the subgroup K is given by its index ind_K in the_SG_tuple. The function get_CA_Km answers a dictio-
nary which to every (ind_A, ind_K, m) associates this value.

INPUT:

1.4. API Documentation 35

sage-euler-product, Release 0.0.3

• my_indices – [int]
list of indices (positive integers) m. It should be divisor-closed (and include 1) and ordered in-
creasingly.

OUTPUT:

dictionary
outputs the dictionary (ind_A, ind_K, m) –> value, see above.

EXAMPLES:

sage: from euler_product.utils_euler_product import ComponentStructure
sage: from collections import OrderedDict
sage: structure = ComponentStructure(3)
sage: OrderedDict(structure.get_CA_Km([1, -4, 4, 2, -4, 1])) # doctest:␣
→˓+ELLIPSIS, +NORMALIZE_WHITESPACE
OrderedDict([((0, 0, 1), 1/2), ((0, 0, -4), 1/2), ((0, 0, 4), 1/2), ((0, 0, 2),␣
→˓1/2), ((0, 1, 1), 0), ((0, 1, -4), -1), ((0, 1, 4), -1), ((0, 1, 2), -1),

((1, 0, 1), -1/2), ((1, 0, -4), -1/2), ((1, 0, 4), -1/2), ((1, 0, 2), -1/2),
→˓ ((1, 1, 1), 1), ((1, 1, -4), 1), ((1, 1, 4), 1), ((1, 1, 2), 1)])

get_CA_Km_F_sur_H(my_indices, coeff_sf , coeff_sh)
get_CA_Km_F_sur_H: a method used for get_euler_products`. The coefficient C(A,K,
m, F/H) are a sum on a variable t of s(F/H, m/t) times a function of the value
computed by ``getr_A_K_t. The lattice class A in given by its index ind_A in the_Class_tuple, the
subgroup K is given by its index ind_K in the_SG_tuple. The function get_CA_Km_F_sur_H answers a
dictionary which to every (ind_A, ind_K, m) associates this value. When F == 1 and H == 1-X, the
output of get_CA_Km_F_sur_H is the same as the one of get_CA_Km.

INPUT:

• my_indices – list[int]
list of indices (positive integers) m. It should be divisor-closed (and include 1) and ordered in-
creasingly.

• coeff_sf – list[float]
the list of the sum of the m-th power of the inverses of the roots of F.

• coeff_sh – [type]
the list of the sum of the m-th power of the inverses of the roots of H.

OUTPUT

dictionary
outputs the dictionary (ind_A, ind_K, m) –> value, see above.

Examples

sage: from euler_product.utils_euler_product import ComponentStructure sage: structure = Compo-
nentStructure(3) sage: structure.get_CA_Km_F_sur_H([1, 2, 3, 4, 5, 6], [1], [1, 0, -1]) # doctest: +NOR-
MALIZE_WHITESPACE {(0, 0, 1): 0, (0, 0, 2): 1, (0, 0, 3): 0, (0, 0, 4): 1, (0, 0, 5): 0, (0, 0, 6): 0, (0, 1,
1): 0, (0, 1, 2): 0, (0, 1, 3): 0, (0, 1, 4): -2, (0, 1, 5): 0, (0, 1, 6): 0, (1, 0, 1): 0, (1, 0, 2): -1, (1, 0, 3): 0, (1,
0, 4): -1, (1, 0, 5): 0, (1, 0, 6): 0, (1, 1, 1): 0, (1, 1, 2): 2, (1, 1, 3): 0, (1, 1, 4): 2, (1, 1, 5): 0, (1, 1, 6): 0}

get_L_values(m, big_p, CIF, CF)
for every Dirichlet character 𝜒 modulo q, we compute the L-series 𝐿𝑃 (𝑚,𝜒) associated to :math:chi:,
save that we remove the Euler factors for primes below P==big_p. The output is the list of these values
computed with prec correct binary digits.

INPUT:

36 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

• m – [ComplexIntervalFieldElement]
the point where the L-series are computed. The real part should be > 1 .

• big_p – int
a positive integer. The Euler products are computed for primes above big_p.

• CIF – Complex Interval Field
[description]

• CF – Complex Field
not used. Only CR.prec is used?

OUTPUT:

tuple
the tuple of the values of 𝐿𝑃 (𝑚,𝜒), where 𝜒 varies on the Dirichlet characters, values computed with
prec correct binary digits.

EXCEPTIONS:

ValueError parameter m not in CIF

EXAMPLES:

sage: from euler_product.utils_euler_product import ComponentStructure
sage: structure = ComponentStructure(10)
sage: CIF = ComplexIntervalField(200)
sage: CF = ComplexField(200 + 1)
sage: m = CIF(2)
sage: structure.get_L_values(m, 200, CIF, CF)
(1.0007481024252386196893654501571877025514323183079093676480?,
1.0000226377974809104806639790897095274193344466859037418898? - 0.
→˓0000131408916900437454874106515694589606441168219958035059?*I,
0.9999899240511933872962748479693199723956317768469030922497? + 4.
→˓14392795471732850815599881400588351007002717820829591633?e-63*I,
1.0000226377974809104806639790897095274193344466859037418898? + 0.
→˓0000131408916900437454874106515694589606441168219958035059?*I)
sage: m = CIF(2.1)
sage: structure.get_L_values(m, 200, CIF, CF)
(1.0004029274879933694024714910876346995176209724918492580239?,
1.000013330852742794601876671961697811977029714891503324800? - 7.
→˓7538957108934769520297959484934618269499996602296768?e-6*I,
0.9999947644552454506994437910117325481790746758589349726959? + 3.
→˓15595539279556818499806833653635488946195252544140357784?e-63*I,
1.000013330852742794601876671961697811977029714891503324800? + 7.
→˓7538957108934769520297959484934618269499996602296768?e-6*I)

get_gamma(t, s, big_p, prec)
Outputs the tuple defined in (22) of the corresponding paper: for every cyclic subgroup 𝐺0 in
the_SG_tuple, we compute

∑︀
𝜒∈𝐺⊥

0
log𝐿𝑃 (𝑡 * 𝑠, 𝜒), where 𝐿𝑃 (𝑥, 𝜒) is the L-series associated to 𝜒,

save that we remove the Euler factors for primes below P==big_p. The output is the list of these values
computed with prec correct binary digits.

INPUT:

• t – int
the L-series are computed at t*s.

1.4. API Documentation 37

sage-euler-product, Release 0.0.3

• s – float
the L-series are computed at t*s. The separation of t and s is only for readability of the code.

• big_p – int
a positive integer. The Euler products are computing for primes larger than big_p.

• prec – int
number of correct binary digits in the output.

OUTPUT:

tuple
the list of values of

∑︀
𝜒∈𝐺⊥

0
log𝐿𝑃 (𝑡 * 𝑠, 𝜒), see the function description.

EXAMPLES:

sage: from euler_product.utils_euler_product import ComponentStructure
sage: structure = ComponentStructure(5)
sage: structure.invariant_characters
((0, 1, 2, 3), (0, 2), (0,))
sage: structure.get_gamma(1, 1.2, 20, 100)
(0.412058674847838475387476473?, 0.3959326495526308567412224144?, 0.
→˓4113672762131896194520237806?)

getr_A_Kt(my_indices)
This method is used only for get_CA_Km and get_CA_Km_F_sur_H. The coefficient C(A,K,m, F/H) are
a sum on a variable t of s(F/H,m/t) times a function of t, say f(t). The lattice class A in given by its
index ind_A in the_Class_tuple, the subgroup K is given by its index ind_K in the_SG_tuple. The
function get_r_A_K_t answers a dictionary which to every (ind_A, ind_K, t) associates this f(t) (with
the moebius factor). The list of t is of course limited and given as the input parameter of get_r_A_K_t.
This is the list of elements that form a divisor-closed subset of integers. This list is the same as the list of
necessary values of m.

INPUT:

• my_indices – list
list of indices (positive integers) t. It should be divisor-closed (and include 1) and ordered in-
creasingly.

OUTPUT:

dictionary
output is a the dictionary (ind_A, ind_K, t) –> value, see above.

EXAMPLES:

sage: from euler_product.utils_euler_product import ComponentStructure
sage: structure = ComponentStructure(3)
sage: structure.getr_A_Kt([1, 2, 3, 4, 6])
{(0, 0, 1): 1/2,
(0, 0, 2): 0,
(0, 0, 3): -1/2,
(0, 0, 4): 0,
(0, 0, 6): 0,
(0, 1, 1): 0,
(0, 1, 2): -1,
(0, 1, 3): 0,
(0, 1, 4): 0,

(continues on next page)

38 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

(continued from previous page)

(0, 1, 6): 1,
(1, 0, 1): -1/2,
(1, 0, 2): 0,
(1, 0, 3): 1/2,
(1, 0, 4): 0,
(1, 0, 6): 0,
(1, 1, 1): 1,
(1, 1, 2): 0,
(1, 1, 3): -1,
(1, 1, 4): 0,
(1, 1, 6): 0}

class euler_product.utils_euler_product.LatticeInvariantClasses

Bases: object

This class takes a modulus q (i.e. a positive integer) and has two named accessors, the_SG_tuple and
the_Class_tuple. The SG tuple is the list of the multiplicative subgroups of (Z/𝑞Z)* that are generated
by a single element. The Class tuple is the list of Lattice Invariant classes, namely the partition of (Z/𝑞Z)* made
by the smallest non-empty intersections of elements of the_SG_tuple.

EXAMPLES:

sage: from euler_product.utils_euler_product import LatticeInvariant
sage: LatticeInvariant(30)
((frozenset({1}),
frozenset({1, 11}),
frozenset({1, 19}),
frozenset({1, 29}),
frozenset({1, 7, 13, 19}),
frozenset({1, 17, 19, 23})),
(frozenset({1}),
frozenset({11}),
frozenset({19}),
frozenset({29}),
frozenset({7, 13}),
frozenset({17, 23})))

euler_product.utils_euler_product.get_beta(F)
Outputs the maximum of 1 and of the inverse of the norm of the non-zero roots of the polynomial F.

INPUT:

• F – pol
a polynomial with RealField coefficients.

OUTPUT:

float
the maximum of 1 and of the inverse of the norm of the non-zero roots of F.

EXAMPLES:

sage: from euler_product.utils_euler_product import get_beta
sage: R0 = RealField(30)
sage: R0X = R0['x']

(continues on next page)

1.4. API Documentation 39

sage-euler-product, Release 0.0.3

(continued from previous page)

sage: (x,) = R0X._first_ngens(1)
sage: F0 = R0X(1 - x^2)
sage: get_beta(F0)
1

euler_product.utils_euler_product.get_beta_rough(coeffs_f)
Outputs the maximum of 1 and of the sum of the norm of the coefficients of the polynomial F, which is precisely
given as the list coeffs_f. This is intended to be an easy upper bound when the function get_beta takes too
much time.

INPUT:

• coeffs_f – float
a list of floats, supposedly representing a polynomial F.

OUTPUT:

float
Outputs the maximum of 1 and of the sum of the norm of the elements of coeffs_f.

EXAMPLES:

sage: from euler_product.utils_euler_product import get_beta_rough
sage: get_beta_rough([1, 3, 4])
8

euler_product.utils_euler_product.get_vector_sf(coeffs_f , how_many)
A polynomial F is given by its list of coefficients, the first one being 1. The output is the list 𝑠𝐹 (𝑚) for m less
than how_many, where 𝑠𝐹 (𝑚) is the sum of the m-th power of the inverses of the roots of F.

INPUT:

• coeffs_f – list[float]
coefficients of the polynomial f, starting by 1.

• how_many – int
number of computed coefficients.

OUTPUT:

list
list des coefficient s_f(m) over m <= how_many.

EXAMPLES:

sage: from euler_product.utils_euler_product import get_vector_sf
sage: get_vector_sf([1, -1], 5)
[1, 1, 1, 1, 1]
sage: get_vector_sf([1, 1, 1], 10)
[2, -1, -1, 2, -1, -1, 2, -1, -1, 2]

euler_product.utils_euler_product.laTeX_for_number(w, how_many, nb_block_sto_cut)
Return a character string representing the real number w made of its integer part followed by every decimal up
to the``how_many`` -th decimals, where every block of 5 decimal is separated by '\\,', and every succession of
how_many blocks is separated by '\n'. The string has a `&` after the decimal point and ends with the string
`\\cdots`.

INPUT:

40 Chapter 1. Documentation

sage-euler-product, Release 0.0.3

• w – float
w is a real number with a (short) integer part and a floating point.

• how_many – int
number of decimals, separated every 5 of them by '\,' and every block of nb_block_sto_cut, on a
different line. ‘\cdots’ ends the string.

• nb_block_sto_cut – int
See above.

OUTPUT:

str
a character string int(w).separated_decimals where separated_decimals is LaTeX formatted version of the
decimal expansion of w, see the description of the function.

EXAMPLES:

sage: from euler_product.utils_euler_product import laTeX_for_number
sage: laTeX_for_number(22.01234567812345, 100, 8)
'22.&01234\\,56781\\,235\\cdots'

euler_product.utils_euler_product.nb_common_digits(a, b, max_nb_digits=100)
Returns -1 if floor(a) != floor(b).

INPUT:

• a – float
first float to compare.

• b – float
second float to compare.

• max_nb_digits – float
maximum of number of digits.

OUTPUT:

int
Returns -1 if floor(a) != floor(b), or the number of common digits.

EXAMPLES:

sage: from euler_product.utils_euler_product import nb_common_digits
sage: import numpy as np
sage: nb_common_digits(1.33333, 1.334444)
2
sage: nb_common_digits(1.33333, 2.334444)
-1
sage: nb_common_digits(1.33333, np.inf)
-1
sage: nb_common_digits(np.inf, np.nan)
-1

euler_product.utils_euler_product.sub_group_generated(n, q)
Return the frozenset of the multiplicative subgroup generated by the powers of n modulo q. It is expected that n
and q are coprime.

INPUT:

1.4. API Documentation 41

sage-euler-product, Release 0.0.3

• n – int
an integer, expected to be coprime to q.

• q – int
a positive integer.

OUTPUT:

frozenset
immutable set of the powers of n modulo q

EXAMPLES:

sage: from euler_product.utils_euler_product import sub_group_generated
sage: sub_group_generated(5, 3)
frozenset({1, 2})

42 Chapter 1. Documentation

CHAPTER

TWO

INDICES AND TABLES

• genindex

• modindex

• search

43

sage-euler-product, Release 0.0.3

44 Chapter 2. Indices and tables

PYTHON MODULE INDEX

e
euler_product.lattice_invariant_euler_products,

26
euler_product.utils_euler_product, 34

45

sage-euler-product, Release 0.0.3

46 Python Module Index

INDEX

C
ComponentStructure (class in eu-

ler_product.utils_euler_product), 34

E
euler_product.lattice_invariant_euler_products

module, 26
euler_product.utils_euler_product

module, 34

G
get_beta() (in module eu-

ler_product.utils_euler_product), 39
get_beta_rough() (in module eu-

ler_product.utils_euler_product), 40
get_CA_Km() (euler_product.utils_euler_product.ComponentStructure

method), 35
get_CA_Km_F_sur_H() (eu-

ler_product.utils_euler_product.ComponentStructure
method), 36

get_euler_products() (in module eu-
ler_product.lattice_invariant_euler_products),
26

get_gamma() (euler_product.utils_euler_product.ComponentStructure
method), 37

get_L_values() (euler_product.utils_euler_product.ComponentStructure
method), 36

get_vector_sf() (in module eu-
ler_product.utils_euler_product), 40

get_vs() (in module eu-
ler_product.lattice_invariant_euler_products),
28

get_vs_checker() (in module eu-
ler_product.lattice_invariant_euler_products),
33

getr_A_Kt() (euler_product.utils_euler_product.ComponentStructure
method), 38

L
laTeX_for_number() (in module eu-

ler_product.utils_euler_product), 40

LatticeInvariantClasses (class in eu-
ler_product.utils_euler_product), 39

M
module

euler_product.lattice_invariant_euler_products,
26

euler_product.utils_euler_product, 34

N
nb_common_digits() (in module eu-

ler_product.utils_euler_product), 41

S
sub_group_generated() (in module eu-

ler_product.utils_euler_product), 41

T
table_performance() (in module eu-

ler_product.lattice_invariant_euler_products),
33

47

	Documentation
	Tutorial Euler Product
	Introduction and principles
	Euler Product over every primes
	Lattice Invariant Classes modulo q
	Euler Product over primes in arithmetic progression

	Fast multi-precision computation of some Euler products
	1. Introduction
	Super fast evaluations
	A Sage script
	Some historical pointers
	On the methodology
	Application to some constants
	A closed formula for primitive roots
	Thanks

	2. Proof of Theorem 2 when F/H=1/(1-X)
	3. Proof of Theorem 2 in general
	4. Link with two other sets of inequalities
	A formula
	Notes on the scope of Lemma 23
	Link with abelian field theory

	5. Timing and implementation notes
	Checking
	Some observations on the running time and complexity

	Installation EULER_PRODUCT
	Euler Product for SageMath
	Prerequisites
	Installation from PyPI in an existing Sage installation built from source
	Installation of the development version from GitHub in an existing Sage installation
	Installation in a virtual Python environment (no prior Sage installation required)
	Documentation
	Check
	Authors
	How to cite this project
	Versions

	API Documentation
	euler_product.lattice_invariant_euler_products
	euler_product.utils_euler_product

	Indices and tables
	Python Module Index
	Index

